

Indabout

Conterence

DRAF

Single Lane Roundabouts Geometric Design in Context -Urban versus Rural

GEOMETRIC PARAMETERS Affecting Capacity

Ourston Roundabout Engineering

3

Effective Geometry

V = Approach Road half width

E = Entry Width

L' = Effective Flare Length

D = Inscribed Circle Diameter

R = Entry Radius

Phi = Entry Angle

Empirical Evidence

Empirical Evidence

Empirical Evidence

Entry angle (phi)

Gap models do not include phi, blind to effect

- If designs uses large phi
 - Like R, the large loss in capacity not predicted
 - Large phi increase crashes into central island
 - Uncomfortable for drivers, additional capacity reduction

Phi best between 20^o – 35^o on MLRs

lational Roundabout

Contere

Entry Angle & Entry Radius

 \emptyset In this case the entry angle is defined as $2\emptyset \div 2$.

Tangent approaches:

- Small entry angle
- Large entry radius
- Not much deflection

This can result in:

- High capacity
- Poor observance of yield and potential for high speeds and entrycirculating crashes

Entry Angle & Entry Radius

Perpendicular approaches:

- Large entry angle
- Small entry radius
- Lots of deflection

Combined Net Effect:

- Low capacity
- Abrupt braking at entries and potential for rearend crashes (especially in high-speed locations)

Geometric Parameters Affecting Safety

Geometric Parameters in the Predictive Relationship:

Entry Path Curvature(Ce)

Entry Width (E)
Approach lane(s) width (v)
Angle between arms (phi)
Inscribed Circle (IC)
Diameter/Central Island Diameter (CI)

•(19 Others less significant e.g. sight distance to the left

Safety Explicit in Design:

UK Graph of crashes versus EPC for Entry Deflection

EPC is a surrogate for entry angle and other speed related parameters

Vehicle Entry Path

- Determines the design speed of a roundabout
- Fastest path allowed based on geometry is drawn
- Fastest path possible for a single vehicle
 - ✓ Absence of other traffic,
 - ✓ Ignore all lane markings
 - Traverse thru entry, around central island, out the exit
- Fastest path is the thru movement
 Check Right turns for skewed intersections

Fastest Path Through a Single Lane Rdbt

Application of EPC requires assessment of traffic flows...

Matching the design to the context

Same intersectionDifferent designVery differentoperations

Focus was peds./bikesRequired outside truck apron

Controlling entry speed

•R1 should be used to control speed - Not entry angle

•PHI amongst other geometrics is simply a means to an end NOT the end itself – an outcome not a criteria.

•With a small PHI for improved capacity you can use other geometrics to compensate and get a small R1 so that speed is controlled.

Entry Deflection Urban Case

Entry Deflection with Roundabout

Complex to draw but expect optimal safety and efficiency

DESIGN EXAMPLE Original – Re-design

Rural Context Design Elements

- Provide a minimum SSD to the entry.
- •Align approach roadways
- •Set vertical profiles to make the central island conspicuous.
- •Splitter islands should extend to initiate deceleration.

Indabout

onterence

DRAF

Rural Context Design Elements

•Use landscaping on extended splitter islands and roadside to create a tunnel effect.

•Provide illumination in transition to the roundabout.

•Use signs and marking effectively to advise of the appropriate speed and path for drivers.

Central Island Delineation

Australian Researched Method of Achieving Speed Reduction

22

Figure 36. Extended splitter island treatment

Speed Differential Alternatives for Rural Design Long medians

National Roundabout Conference

2005 DRAFT

Highway 403

50mph

30mph

Wilson Street

Hun Dr

- Safety:
 - Transition between high-¹ speed rural and low-speed urban environments

Proof: Predicted Vs. Measured Speeds - Data Collection

Wilson Street West

Speed Studies

National Roundabout Conference 2005 DRAFT

Additional Treatment of High Speed Entry

National Roundabout Conference 2005 DRAFT

Original SLR

Empirically Based Re-Design

Entry Path Curvature

al Rou

3

Components (geometric elements) vs. Composition (functionality)

- •The design isn't functional unless it passes the test of the driver interface
- It's not enough to have knowledge of the components
- Composition based on principles is what determines the functionality
- If you only focus on the components the final assembly may be totally overlooked

•Adhering to the manual using data, figures and tables does not guarantee a sound design.