RODEL

COMPUTER MODELS

<u>CRUCIALLY IMPORTANT FOR DESIGN</u>

- Predict Capacities, Queue and Delays.
- Predict Accidents
- Determine geometry and ROW
- Basis of Evaluation
- Basis of Justification
- FOUNDATIONAL
- **<u>RODEL</u>** is a UK roundabout model
- Derives queues and delays from traffic & geometry

RODEL

- Used UK empirical capacity equations
- Peak Hour divided into 1, 5, 10, 15 min slices
- Each slice is modelled
- Peak Hour evolves over time
 - -Volumes
 - -Capacities
 - -VC Ratios
 - -Queues
 - -Delays
 - -Exit volume

BACKGROUND

• UK has high traffic density

- Old Traffic Circles started grid-locking
- 1966 **<u>YIELD LINES</u>** Gridlock eliminated

Surprising increase in capacity

But some roundabouts still congested

POST 1966

The Mini Roundabout was invented (TRL)
 Stunningly successful

• Higher capacity than some large roundabouts?

• Yield line capacity not understood

Traffic Circle capacity equations obsolete

• Yield line capacity model was needed

Problems with Capacity Prediction

• Gap Theory developed in UK (Tanner 1950's)

• Gap Theory used to estimate roundabout capacity

Many <u>'at capacity'</u> roundabouts needed fixing

• Their capacity could be **<u>directly measured</u>**

Gap Capacity and Measured could be compared

GAP Capacity

Large disagreement with measured capacity

 Predicted no congestion ------ when observed
 Predicted congestion ------ when not observed
 Sometimes predictions ------ were reasonable
 No consistency ------ very unreliable!

- Also weak Geometry / Capacity relationship
- Design was therefore very uncertain
- Many complaints to Central Government

Development of a Capacity Model

- UK Government commissioned the TRL
- Gave TRL an <u>open check</u> to derive capacity model
- Rod Kimber was Tanners successor at TRL
- Like Tanner he was keen on Gap Models
- He wanted a better Gap Model for roundabouts
- Measured capacity at 'at capacity' operation
- Measured the Gaps at 'at capacity' operation
- Formally compared Gap and Measured capacities
- Large disagreement

OBSERVED vs GAP CAPACITY (Single entry)

WHAT WAS HAPPENING

CAPACITY

- Research started in earnest.
- Vehicles fitted with telescopic masts
- Fish-eye lens cameras on top of masts
- Parked in the middle of Central Island
- <u>'At Capacity'</u> and <u>'sub capacity'</u> operation filmed
- This was a revelation
 - -At least 3 capacity mechanisms in addition to gap
 - -As VC ratio rose these mechanisms grew in strength
 - -They have a large effect on capacity
- Gap mechanism only a part of a complex situation

Problems with Capacity Prediction

- At capacity operation is very complex
- Impossible to separate each mechanism
- impossible to relate each mechanism to geometry
- Concluded Gap Theory inadequate for roundabouts

- Empirical model developed by TRL
- Capacity directly measures
- Capacity related to geometric variation
- Lab Rep0rt LR942

EMPIRICICAL CAPACITY MODEL

- Capacity measured at existing real world roundbouts
- 11,000 minutes of 'at capacity' operation
- Over 500,000 <u>at capacity</u> vehicle observed
- Very wide geometric range
- Very wide traffic volume range
- Sustained queues for more than 30 minutes essential
- Queues never less than 5 vehicles
- Test track experiments on geometry and capacity

Cost 11 Million Dollars

EMPIRICICAL CAPACITY MODEL

- Empirical Capacity Model published in 1980
 TRL Lab Report LR942
- Accurate, stable, unchanged for 25 years
- Checked in 1997 against 35 Roundabouts
- Model confirmed NO changes needed

Very strong geometry / capacity relationships
Revolutionised Roundabout design in UK

EMPIRICAL MODEL

Empirical Equations were <u>revolutionary</u>

• <u>Capacity is unbelievably sensitive to geometry</u>

Very counter intuitive - contradicts intuitive theory

Very powerful at achieving high capacity

Smaller - safer - higher capacity roundabouts

EMPIRICAL MODEL

UK roundabouts

- -Have high capacity
- -Falsely attributed to UK driver behaviour
- -UK drivers nor supermen or superwomen
- -UK Signal Capacities is the same as elsewhere
- The difference is due to geometry
 - -A direct consequence of the Empirical Equations
- Countries like US relatively new to Roundabouts
- US Roundabouts at <u>'sub capacity'</u> operation
- Capacity <u>CANNOT</u> be measured
- Capacity <u>CANNOT</u> be estimated from gaps

EMPIRICAL MODEL

- RODEL and ARCADY use empirical capacity
 - -Used for designing new roundabouts
 - -Used for modifying existing congested roundabouts
- ACID TEST of CAPACITY MODEL
- Fix existing **congested** roundabout
- With **<u>existing traffic</u>** and **<u>no ROW</u>**
- Model predicts subtle geometric changes
 - -Reduce queues from 100 to minimal number
 - -Small modification done within 4 weeks
 - -Queues of 100 vehicles vanish volumes increase
 - -Excellent feed back do not have to wait 20 years

DEVELOPMENT OF A U.S. ROUNDABOUT MODEL?

US CAPACITY MODEL

- UK Empirical model cost\$11.0 M
- FWHA spending less than\$ 1.0 M
- US has a small number of roundabouts
- <u>Operating at low VC ratios</u> (not 'at capacity')
- <u>Narrow geometric range</u> (mostly are SLR)
- Narrow Volume Range (mostly SLR)

- Sustained queues for 30 minutes essential
- Queues must never less than 5 vehicles
- Sporadic non-capacity queues useless

US ROUNDABOUT MODEL

US data insufficient for
 Capacity Measurement
 For an Empirical Model

A theoretical gap model is almost certain
Only gap capacity mechanism
Other NON gap capacity mechanisms omitted

• FHWA Model will be limited by gap limitations

Gap capacity - insensitive to geometry

- 1. Change geometry
- 2. Large increase incapacity
- 3. Large reduction in VC ratio
- 4. But no change in delays
- 5 No change in gap parameters
- 6 Therefore it is falsely concluded:-
 - 1. There is no change in Capacity
 - 2. Capacity insensitive to geometry

VC RATIO

CASE STUDY

A ROUNDABOUT IN ISRAEL

ROUNDABOUT IN ISRAEL

Single lane roundabout built in IsraelCapacity overestimated

One leg congestion on Day 1Sustained queues during peak hour

Researchers measured capacity directly

Compared capacity with Capacity Models

ISRAEL- Measured vs Gap Methods

Empirical vs Observed (Unfamiliar, timid driver behaviour)

ISRAEL- Empirical vs Observed (Revised for familiar driver behaviour)

RODEL

A is design tool for generating designsDeveloped by a designer for designers

• Not just for checking designs after drawing

• Rodel used **before** drawing to derive geometry

Geometry known before drawing starts

• Far better than drawing blind then checking

TWO MODES

RODEL has two Modes of operation

• <u>Mode 1</u>

- Generates ~ 40 geometry options / leg
- From user specified target delays / leg
- Alternative selected for each leg
- That best fits ROW and maximise safety

TWO MODES

Refines selected geometryFully Interactive with 3 sec 'What If' cycle

- Mode 1 = 'the driver'
- Mode 2 = 'the putter'
- Many like to 'put' from the 'tee' to 'green'

INPUT AND OUTPUT

All Input and Output on a single screen

- All relevant information <u>always visible</u>
 - Relationships between geometry
 - Relationships between flows
 - Relationships between geometry and flows
 - Relationship between INPUT and RESULTS
- Fully interactive
- Very educational
- Generates a feel for geometry / capacity / delay

BETTER DESIGNS IN LESS TIME

- Results understood in relation to input
- Rapid understanding of problem
- Rapid solution
- Saves a LOT of time
- Better designs in a fraction of the time

FINDS SOLUTIONS OTHER MISS

- Other models are not Fully interactive
- Input on several screens
- Output in separate FILE that needs editing
- 'what if' cycle takes several minutes
- When results found question forgotten
- Miss solutions Rodel finds

RODEL finds solutions other models miss

TRL and RODEL

- Current negotiations between Rodel and TRL
- Aim for TRL to adopt Rodel
- Partnership between Rodel and TRL
- To develop new version of RODEL
- Full Windows program
- Many very powerful enhancements
- Designed by a designer, for designers
- Animated Graphical output

