

High Speed Approaches At Roundabouts

INTRODUCTION

Mobility & Growth = High Speed Roadways with Increasing Congestion & Crossroads Stop/Go/Slow-down/Speed-up/Stop/Go Enforced Pauses to Flow Unnecessary Slow All Traffic = Faster Travel Times Threat of Fast Vehicles on HSA is Eliminated Benefits of Slowing All vs. Stopping Phases Solution: Modern Roundabout Coupled with Good Geometric Design & Adequate Mitigation Measures for High Speeds Self Regulating Device – User Controlled Roadway Harmony, Multi-functional

Scott Ritchie, P.E.

PURPOSE

- More Roundabouts Are Being Proposed & Designed on High Speed Roadways
- The Question Continually Asked Is: "Are Roundabouts Appropriate on High Speed Roadways?" (North America)
- Most Other Countries Worldwide Prefer Roundabouts on High Speed Roadways, But What About North America?
- Hence, RTE Was Asked to Produce In-Country Results For Several Roundabouts Proposed on High Speed Roadways
- This Presentation Provides Brief Highlights of the High Speed Approaches At Roundabouts Publication

Scott Ritchie, P.E.

www.roundabouts.us

High Speed Approaches At Roundabouts: Report Objectives

- Objective 1: Evaluate Perceived Concern of High Speed Approaches at Roundabouts
- Objective 2: Present Safety Statistics & Data of Roundabouts Worldwide with High Speed Approaches (H.S.A.)
- Objective 3: Conduct Case Studies of Existing Roundabouts in N.America w/ H.S.A.
- Objective 4: Demonstrate Geometric Design Treatments Currently Used for High Speed Conditions
- Objective 5: Recommend Additional Design Treatments for H.S.A. at Roundabouts

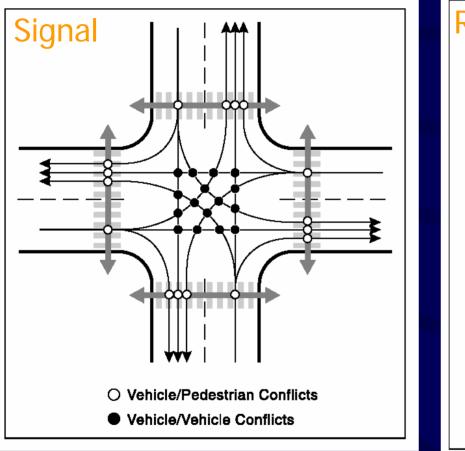
Scott Ritchie, P.E.

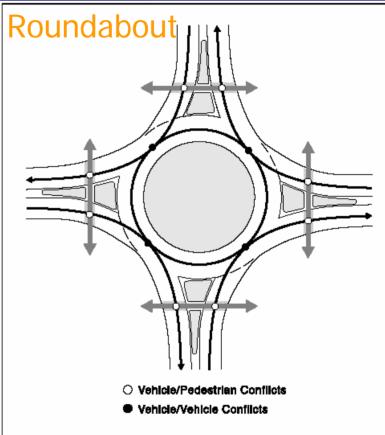
High Speed Approach Data

Very Few of These Type Studies Exist in U.S. RTE & ORE Sought Worldwide Resources Safety Data Research (TRL, MSHA, WSDOT, IIHS, FHWA, ITE, QDMR, Design Specialists) Comparative Before/After Data at **Roundabouts Converted from Signals** High Speed Case Studies with Before & After Crash and/or Speed Data High Speed Geometric Design Treatments High Speed Non-Geometric Treatments

Scott Ritchie, P.E.

Average Safety Statistics Summary From Multiple Data Sources


40% Reduction in All Crash Types Combined / PDO

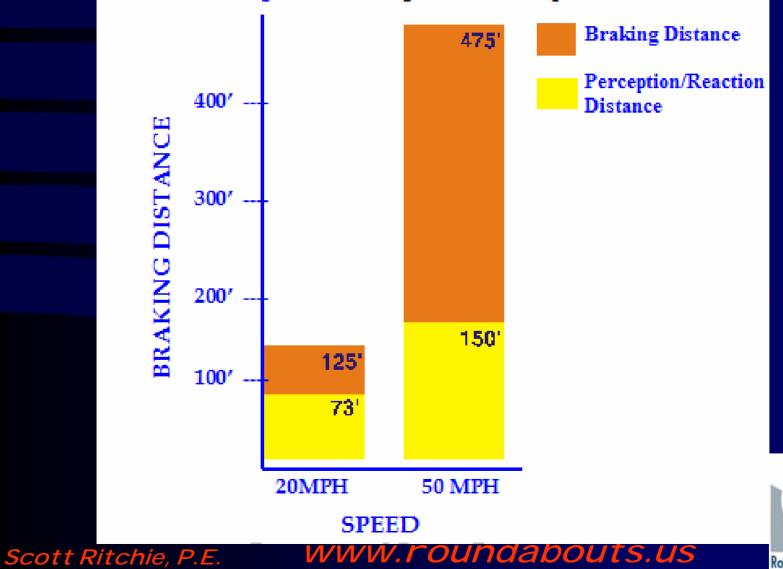

- 80% Reduction in Injury Accidents
- 90% Reduction in Fatalities
- 30% Reduction for Pedestrian and Bicycles
- Up to a 75% Reduction in Delay

Results Consistent With International Studies

Why Are Roundabouts Safer Intersections?

Vehicle & Pedestrian Safety

Vational


Roundabout Conference

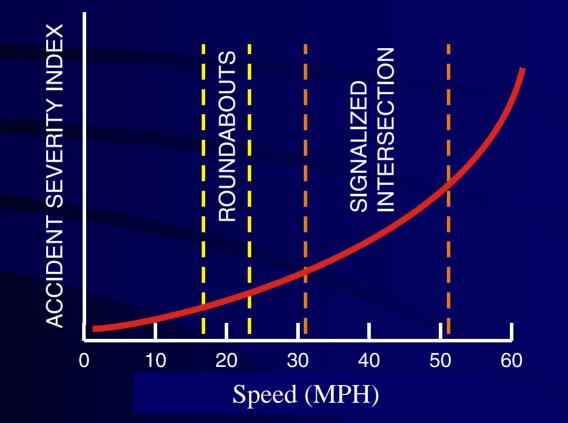
ロフ

Scott Ritchie, P.E.

www.roundabouts.us

Why are Roundabouts Safer? Lower Speeds = Shorter Braking Distance Figure 2: Braking Distances & Speeds

Why Roundabouts...Safety


Injury Producing Right Angle Crashes Are Eliminated

Scott Ritchie, P.E.

www.roundabouts.us

Why are Roundabouts Safer? Accident Severity

RTE

Nation

Roundabout

onterence

20

Roundabouts & Traffic Engineering

Scott Ritchie, P.E.

Accidents Avoided At Roundabouts

One in Three Americans Know __ Someone Who Was Injured or Killed by a Red Light Runner

Scott Ritchie, P.E.

www.roundabouts.us

Maryland State Hwy Administration

- E. Myers' Accident Reduction with Roundabouts Reported 5 High Speed Intersections
 Data: 3Yrs Before/ 3Yrs After Roundabout Constr.
 Summary Results: – 59% Overall Accident Reduction
 - Avg of 5.56 Accidents Before
 - Avg of 2.3 Accidents After
 - Injury Accidents Reduced by 80%
 - All Intersections: Reduced Frequency & Severit

Scott Ritchie, P.E.

Maryland State Hwy Administration

Table 2: Maryland Accident Severity Comparison

3 Years Before and After Data for All Roundabouts

	Number Of Accidents		_		Total Accident Cost			
Crash Type	Before	After	Cost	Before	After	ab		
Angle	62	8	\$125,971	\$7,810,202	\$1,007,768	out		
Rear-End	6	10	\$80,231	\$481,386	\$802,310			
Sideswipe	2	1	\$60,819	\$121,638	\$60,819	Conferen		
Left-turn	11	1	\$95,414	\$1,049,554	\$95,414	fer		
Opposite						.en		
Direction	1	0	\$307,289	\$307,289	\$0	ICe		
Single						20		
Vehicle	3	20	\$59,851	\$179,553	\$1,197,020	2005		
TOTALS	85	40	3.0	\$9,949,622	\$3,163,331	RAFT		

Source: Accident Reduction With Roundabouts, Myers

RTE High Speed Approach Tables.xls

Scott Ritchie, P.E.

www.roundabouts.us

Roundabouts & Traffic Engineering

Vational

TRL LR 1120

- Injury Accident Research Comparisons at 84 U.K. Roundabouts at Both Low & High Speeds
 Further Analyzed Accident Type & Road User
 Accident Freq. By Type are Related to Flow & Geometry Using Empirical Regression Eqns.
 Data Conveys Less Crashes & Acc. Rate for Small ICDs with Flare on High-Speed Roads
 - Compared to Low Speed Sites
- Data Shows Accident Severity & Freq Less at High Speed Roundabouts vs. Low Speed
- Entry Curvature and Angle Between Arms were Major Contributing Factors

Scott Ritchie, P.E.

TRL LR 1120

Table 3: Roundabout Crash Types & Rates

Accidents Statistics By Roundabout Type & Speed

				Per	centage By	/ Acciden	t Type	0
Roundabout Category	Operating Speeds (MPH)	Total # of Accidents	Avg Accident Rate	Entering / Circulating	Approach	Single Vehicle	Other	Indabout Ped
Small	30 - 40 50 – 70	497 150	37.1 28.7	72.2% 67.3%	6.6% 8.0%	7.5% 10.7%	9.7% 12.0%	4.0% Conte
Conventional	30 - 70 30 - 40	146	21.2	16.4%	18.6%	37.6%	19.2%	8.2% nc
(No Flare) Two-Lane	50 – 70 30 - 40	193 244	28.7 22.5	24.9% 21.7%	26.9% 24.2%	29.0% 24.2%	17.1% 18.4%	2.1% [©] 11.5%
i wo-cane	50 – 70	197	22.4	16.8%	29.9%	32.5%	17.8%	3.0% D

Source: TRL, LR 1120

RTE High Speed Approach Tables.xks

Vational R

Scott Ritchie, P.E.

www.roundabouts.us

TRL LR 1120

TABLE 4: Roundabout Accident Severity

Crash Statistics By Roundabout Type & Speed

	Operating	Numb	er of:		Accid	ents	Accident	n n	
Roundabout	Speeds		Junction					Frequency/	Severity
Category	(MPH)	Sites	Years	Fatal	Serious	Slight	Total	Junction/Yr	% 0
Small	30 - 40	25	113.4	2	86	409	497	4.38	18 C
Small	50 – 70	11	53	1	20	129	150	2.83	14 nf
Conventional	30 - 40	11	61.9	3	37	106	146	2.36	27 erer
(No Flare)	50 – 70	11	62.2	0	30	163	193	3.1	16 Ce
Two-Lane	30 - 40	14	72.5	1	30	213	244	3.37	13 200
Two-Lane	50 - 70	12	68.3	0	22	175	197	2.88	11 ⁰⁵
Source: TRL LR 1120 RTE High Speed Approach Table									Rahlas vis

Source: TRL, LR 1120

RTE High Speed Approach Tables.xis

National Rc

Scott Ritchie, P.E.

www.roundabouts.us

High Speed Case Study: Novelty Hill Washington DOT

Before Rounda

NE 124th STREET

203

2

- SR 203/124th St Stop Control, Rural High Speed, High Accidents
- ♦ Perceived: "Roundabouts are unsafe on high speed roads." → Study Required
- Local Signal Comparison Freq/Severity at 9 HS/LS Intersections Prev. Stop
- ♦ Acc Results → Increase in Rates & Severity After Signal
- Compared HS Signals to HS Roundabouts in U.K.
- Resulted in 50-80%
 Reduction in Injury &
 Fatalities
 Scott Ritchie, P.E.

Washington DOT

Final Decision: Build SR 203/ 124th Roundabout

Completed
 October
 2004

 Past Eight Months, No
 Reported
 Collision
 Problems

No Speed Studies Planned

Scott Ritchie, P.E.

110

Positive Results Over Previous Intersection Control Type with No High Speed Problems Identified www.roundabouts.us

HS Case Study: Ancaster Roundabout

Before

Ter

- Unsignalized Rural High Speed Arterial Intx 575' from Hwy 403
- Before / After Crashes & Speeds Analyzed
- 31 Crashes from 1988-2002 (10 Injuries)
- ♦ After Roundabout → 5
 Single Vehicle Accidents
 Only Why?
- All Night, All at HS EB Entry, 2 Drunk Drivers
- Design? High Speeds?
- Design Speed Study = OK
- Lack of Landscaping!

Scott Ritchie, P.E.

Case Study: Ancaster Roundabout

🙆 Design Works With Rural High Speed Approach Elongated Splitter Island Adequate Deflection 6 Point Speed 20 ğ Corridor Study Conducted

Roundabouts & Traffic Engineering

Scott Ritchie, P.E.

HS Case Study: Ancaster Roundabout

Table 9: Wilson Street Speeds Before & After Construction Natior

Measured Speeds at the Ancaster Roundabout Reported at 85th Percentile Wilson Street / Meadowbrook Drive / Hamilton Drive

Point 1 EB WB 48 48 39 36 -9 -12 Daint 2 EB 47 26 -21	
VVB 48 36 -12	Ô
EB 47 26 -21	ŭ
Point 2 LD 47 20 -21	n
WB 48 32 -16	$\frac{O}{O}$
LOCATION OF MODERN ROUNDABOUT	d
Point 3 EB 46 28 -18	
WB 50 24 -26	tu
Point 4 EB 44 37 -6	С
WB 47 36 -11	0
Point 5 EB 42 43 1	þfe
WB 43 42 -1	er
Point 6 EB 42 42 0	en
WB 43 41 -2)CE

Source: ORE/RTE

www.roundabouts.us

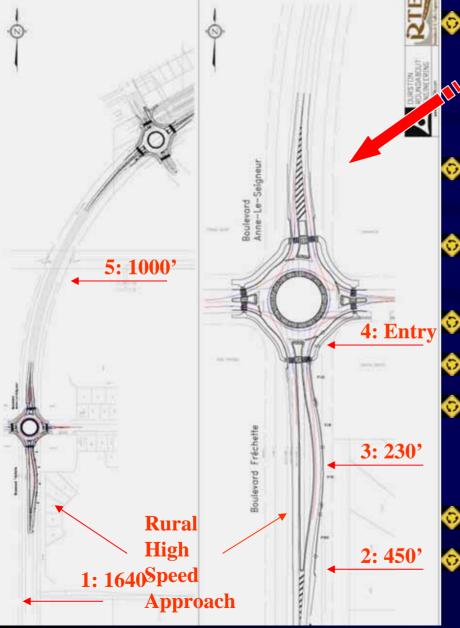
RTE High Speed Approach Tables x

Roundabouts & Traffic Engineering

Results Tabulated 6 Point Speeds

 \odot

All Reduced


Mostly Nearest Roundabout

Due to Single Veh Acc, City Installed Delineators at **High-Speed** Approach →

See-through problem: Needs Landscaping!

Scott Ritchie, P.E.

HS Case Study: Chambly Roundabout

Scott Ritchie, P.E.

Speed Studies Conducted to **Compare Predicted Design Speeds** & Post Construction Speeds at Rural High Speed Site Long Splitter Island, Curvilinear Approach in Design 🚳 Post Roundabout Speed Study at 5 Points along HS Roadway 🧇 1: 55mph, 85th=63mph, Avg=58 2: 85th=45mph, Avg=39mph 🞯 3 & 4: Speeds are Lower Than Predicted Fast Path Design Speed w/ Highest Actual Speed = 20mph 5: 85th=41, Avg=39 **Results are positive!**

Roundabouts & Traffic Engineering

Table 10: Chambly Speed Predictions Before Construction

Based on Design Plan Set Fast Path Speeds

Fréchette & Anne-Le-Seigneur Boulevard

	South	bound	North	bound	Westb	ound	Eastb	ound
Design Parameter	R1	R2	R1	R2	R1	R2	R1	R2
Radius (ft)	137.8	59.1	111.5	68.9	154.2	59.1	144.4	65.6
Speed (mph)	24	17	22	18	25	17	24	17

Table 11: Chambly Speeds After Construction

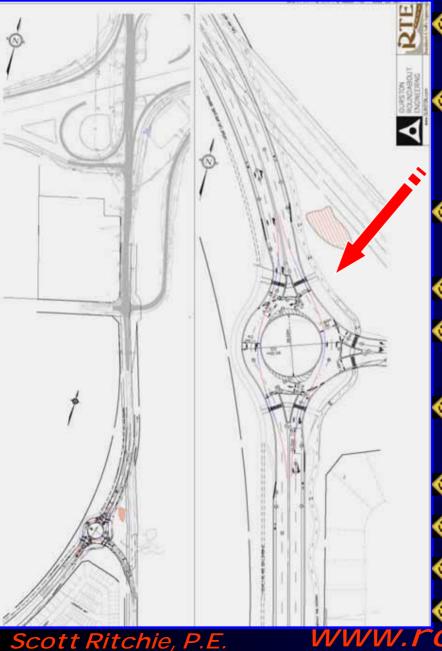
Calculations Based on Actual Measured Speeds

Survey Location	Average Speed	85th Percentile Speed	Highest Speed	Lowest Speed	Posted Speed
Point 1	58	63	69	45	55
Point 2	39	45	54	26	55
Point 3	29	32	38	21	55
Point 4 (Entry)	13	16	20	8	55
	OCATION	OF MODERN RO	UNDABOU	IT	
Point 5	37	41	45	26	45

Source: ORE/RTE

RTE High Speed Approach Tables.xls

ed Approach Tables.xls


Case Study: Chambly Roundabout

Again, Landscaping Needed

Looking NB at High Speed Approach

Looking SB at High Speed Approach Scott Ritchie, P.E. WWW.roundabouts.us

HS Case Study: Townline Roundabout

Previous Stop Control had High Crash Rates due to High Speeds Z **Studies Conducted to Compare Design Speeds & Post Construction** Speeds along High Speed Roadway "T" Intersection, No Long Splitte \odot Islands or Curvilinear Approaches Sefore: 85th = 47mph **Predicted Fastest Path Speeds:** 30 mph SB, 32 mph NB (at Entry) After: NB 85th = 20 mph, SB = 21 Highest Entry Speeds 23 / 26 mph No Accident Problems Identified Results are positive Good Maptype Signs! & Arrow-shaped Exits
 Roundabouts & Traffic Engineering

		Tab	ted Sp	eeds					
Townli				n <mark>s Fastes</mark> t mera Par	t Path Spe kway	eds			
Case						thbound		bound	Natior
Ctudy	•		esign Pa	ramete	r R1	R2	R1	R2	nal
Study:			Radiu	s (ft)	252.6	6 157.5	305.1	114.8	Rour
			Speed	(mph)	30	24	32	21	Roundabou
Table 14: Town Based on Actual Measu							1 Approacl	h Tables.	t Count
Townline Road / Can-Am	-			onsauca					erer
Cara da (malt)		bound	Westb		Southb				ICe 2
Speeds (mph)		Exiting	Entering		Entering				
Average	16	25	20	26	16	24			
Standard Deviation	3	4	5	4	4	3			DR
85th Percentile	20	30	25	30	21	27			AFT
High	23	37	29	34	26	30		T	F
Low	11	16	3	14	11	19			

REPORT CONCLUSIONS

- Report Provides Case Studies and Statistics at Hundreds of Roundabouts Studied by Roundabout Specialists, Jurisdictions & Organizations Throughout the Globe.
- Statistically, Roundabouts are the Most Appropriate Control for Intersections with High Speed Approaches
- Case Studies Acknowledge Roundabouts on High Speed Roadways Are Acceptable, Function Well, & Preferred
- Yet, Evidence is Still Needed to Form Geometric / Safety Performance Relationships on High Speed Approaches
- U.K. Relationships Should Not Be to the Contrary in N.A.
- Yet, Additional Design Treatments Are Still Recommended

Scott Ritchie, P.E.

www.roundabouts.us

BlB.

2005

Roundabouts & Traffic Engineering

Recommended Geometric Design Treatments for H.S.A. at Roundabouts Sufficient <u>Deflection at Entry</u> is Key! Proper Entry Design Correlating to the Fastest Path Design Speeds that Are **Consistently Slow For All Approaches** Entry Design Correlates to Circulating **Speeds with Appropriate Speed** Differential (Less than 12 mph) Entries are Visible To Driver With Properly **Extended Curb & Gutter**

RTE

Roundabouts & Traffic Engineering

Scott Ritchie, P.E.

Entry Design & Deflection is Key

Cutting off the entry sight but too much deflection

An Over-Deflected Entry

Roundabouts & Traffic Engineering

Scott Ritchie, P.E.

Inadequate Deflection!

Courtesty: Phil Demosthenes

US 6 / Post Rd - Avon, CO

Nation

Roundabout

Conference

Scott Ritchie, P.E.

www.roundabouts.us

Recommended Geometric Design Treatments for H.S.A.R.

- Extend Splitter Islands to SSD Differential
- Curvilinear Approaches Still Need More Research, but May Prove Appropriate – Recommend Caution
- Appropriate Vertical Design of Roadways, Circulating Roadway, & Truck Apron (Visible)
- Consider Two-lane Entry with Short Flare Length
- Consult a Roundabout Specialist!

Scott Ritchie, P.E.

www.roundabouts.us

Recommended Non-Geometric

MONTGOMERY STREET / WASHINGTON AVENUE ROUNDABOUT

www.roundabouts.us

Scott Ritchie, P.E.

Roundabouts & Traffic Engineering

NorthSta

ENGINEERING

Recommended Non-Geometric Design Treatments for H.S.A.R.

- Avoid Excessive Signing
- Increased Chevron Signs On Central Island
- Long Hatched Areas (Striping), as an Alternative to Long Splitter Islands
- Repeat Lane Assignment Arrows
- Thermoplastics Not Paint
- Transverse Yellow Bar Markings
- Internally Illuminated Bollards
- Internally Illuminated Exit Signs (i.e. Vail, CO)

Scott Ritchie, P.E.

www.roundabouts.us

Final Remarks

- Make Roundabout & Need to Slow Down Clear to Driver at SSD with Treatments such as Long Splitter Islands, Extended Curbing, Bar Markings, Thermoplastic, Hatching & Striping
- Make Roundabout Visible During Day with Foliage, Chevrons, and Illuminated Bollards;
- Avoid Excessive Signing: Hinders Driver's Ability to See the Roundabout, Peds, & YIELD
- Make Roundabout Visible During Night with Illuminated Bollards, Extended Chevrons, Illuminated Signs (Internally/ Externally), & Street Lighting
- Add Side Friction with Planters, Curbing, Trees, Splitter Islands, Etcetera
- Ensure Proper Geometric Design: Deflection, Speeds, Fast Paths, Entry Radii
- Roundabouts With High Speed Approaches Are Appropriate If Designed Correctly!
 Scott Ritchie, P.E.
 WWW.roundabouts.us

