NCHRP 3-65: Applying Roundabouts in the United States

Preliminary Safety Findings

Bhagwant Persaud Craig Lyon Aimee Flannery Lee Rodegerdts Beth Wemple

Develop roundabout level accident models

Develop approach level accident models

Conduct a before-after study of roundabouts converted from signal or stop control

Overview

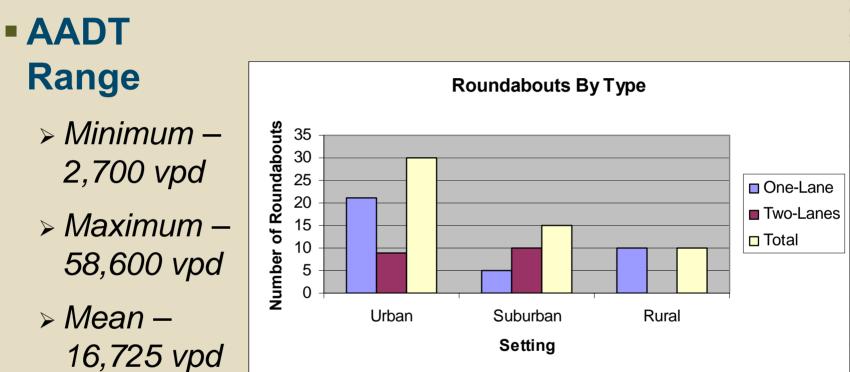
Model development process

Roundabout level models

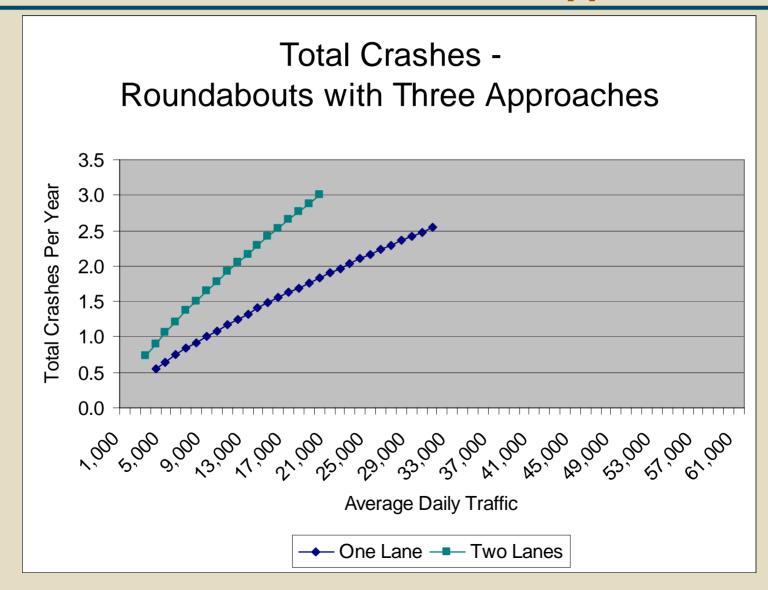
- Data Summary
- Models
- > Applications

Approach level models

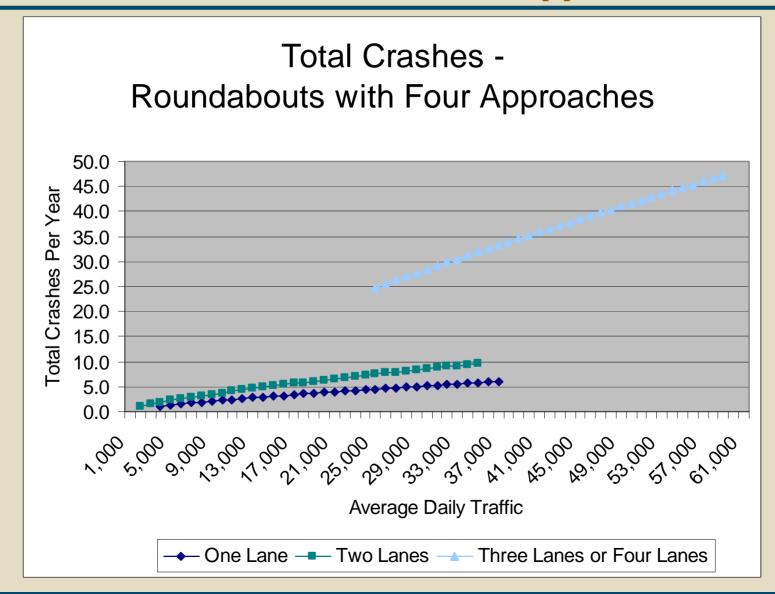
- Data Summary
- Models
- > Applications
- Speed Models
- Before-After Study
- Summary


Model Development Process

Model development process


- Assemble volume, geometric and crash data
 - > Required variation in characteristics
 - > Needed large enough sample size of crashes
- Postulate model forms and identify possible variables from literature review
- Use PROC GENMOD of SAS software
 - > Negative binomial error structure
- Model form: Accidents = α (AADT) $\beta exp(\delta_1 X_1 + ...)$
- Also estimates dispersion parameter of negative binomial distribution that is used in accident prediction

Roundabout Level Models


Roundabout Level Volume and Geometric Data

Roundabout Level SPF – Total Crashes Per Year – Three Approaches

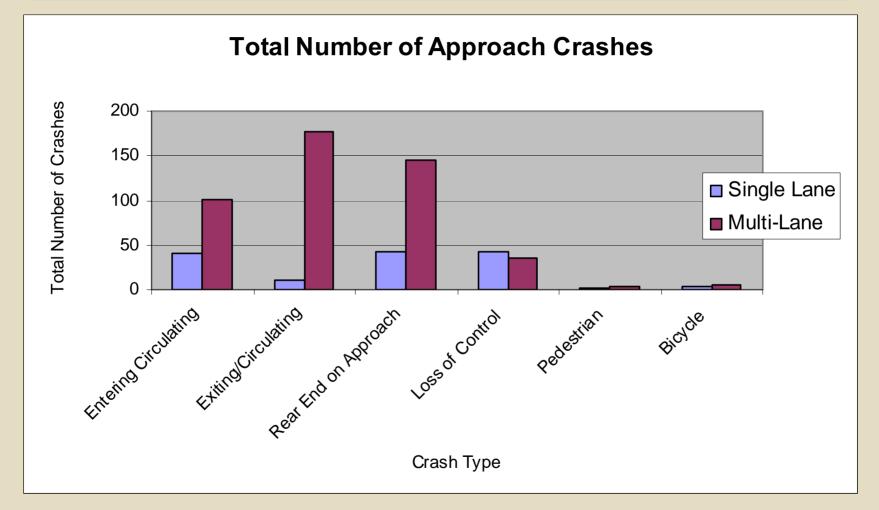
Roundabout Level SPF Total Crashes Per Year – Four Approaches

Roundabout Level Model Applications

- Intended for estimating the expected number of collisions per year at a roundabout.
- Primarily intended for doing a comparative analysis of the safety performance of a roundabout to other roundabouts or other intersection types.

The models can be used in estimating the expected safety of a contemplated roundabout.

Approach Level Models


Summary of Approach Level Geometric Data (120-139 arms)

Variable	Minimum	Maximum	Mean
Inscribed Circle Diameter (ft.)	36	300	142.3
Entry Width (ft.)	7.5	49	22.0
Approach Half Width (ft.)	10	49	20.0
Circulating Width (ft.)	11.5	45	25.8
Angle To Next Leg	27	180	89.3
AADT	220	19,593	4,637

Other variables considered for candidate models

- Effective Flare Length (ft.)
- **Entry Radius (ft.)**
- **Entry Angle**
- Exit Width (ft.)
- Departure Width (ft.)
- **Exit Radius (ft.)**
- Central Island Diameter (ft.)
- > 1/Entry Path Radius (1/ft.)
- > 1/Circulating Path Radius (1/ft.)
- > 1/Exit Path Radius (1/ft.)
- > 1/Left-Turn Path Radius (1/ft.)
- > 1/Right-Turn Path Radius (1/ft.)

Approach Level Crash Data -Total Number of Crashes

Approach Level Model Results

Several candidate models with logical variables

- > none with more than a few variables
- > estimated effects in the expected direction

Specific collision types (TOTAL collisions only)

- > entering/circulating
- » exiting/circulating
- > approaching

Approach Level Safety Peformance Functions

Entering/Circulating Crashes Per Year

 $e^{-7.2158} (EnteringAADT)^{0.702} (CirculatingAADT)^{0.132} e^{(0.051 EntryWidth-0.028 AngletoNextLeg)}$

Exiting/Circulating Crashes Per Year

 $e^{-11.6805} (Exiting AADT)^{0.280} (Circulating AADT)^{0.253} e^{(0.022 Inscribed Circle Diameter + 0.111 Circulating Width)}$

Approaching Crashes Per Year

 $e^{-5.1527} (EnteringAADT)^{0.461} e^{(0.03ApproachHalfWidth)}$

Recommended approach level models for crashes/year

Entering/Circulating = exp(-7.2158) (Entering AADT)^{0.702}(Circulating AADT)^{0.132} exp(0.051 x Entry Width - 0.028 x Angle to Next Leg)

Exiting/Circulating = exp(-11.6805) (Exiting AADT)^{0.280}(Circulating AADT)^{0.253} exp(0.022 x ICD + 0.111 x Circulating Width)

Approaching = exp(-5.1527) (Entering AADT)^{0.461} exp(0.03xApproach Half Width)

Approach Level Model Applications

- To understand the impacts of geometric design decisions on various collision types.
 - > IHSDM applications
 - > HSM applications
- Not intended as predictive models

If so used, it is desirable to calibrate a multiplier to reflect local conditions.

% change in crashes from candidate approach level models per unit change in variable

				. 2
Variable	Entering/ Circulating	Exiting/ Circulating	Approach	
Entry Radius (ft.)	1% reduction			NOULIG
Entry Width (ft.)	5% increase			Noninaboni
Approach Half Width (ft.)			3% increase	
Inscribed Circle Diameter (ft.)		2.2% increase		
Central Island Diameter (ft.)	0.5 to 0.8% reduction	1.4% increase		
Circulating Width (ft.)		12% increase		
Angle To Next Leg (degree)	3% reduction			

Speed Based Models

Speed Based Models for Approach Level

Hypothesis:

Speed profile – design model PLUS Crash - speed profile model → Alternative crash prediction model

Crash models developed with AADT and observed speeds at approach, entry point, exiting point

Models not recommended – more data needed

Before-After Study

BEFORE-AFTER RESULTS – ALL SITES (55)

	All	Injury
Crashes recorded in after period	726	72
EB estimate of accidents expected after without roundabouts	1122	296
Reduction	35.4 %	75.8 %
(Standard error)	(3.4)	(3.2)

RESULTS BY CONTROL TYPE BEFORE CONVERSION

CONTROL BEFORE	All	Injury
SIGNALS (9)	48%	78%
TWO WAY STOP (34)	44%	82%
ALL-WAY STOP (10)	Insignificant increase	

Results by setting and number of lanes

ALL CRASH SEVERITIES

	SINGLE LANE	MULTILANE
RURAL	72%	No sample
	(9)	
URBAN/	56%	18%
SUBURBAN	(16)	(11)

Before after study - Additional insights

Safety benefit appears to decrease with increasing AADT

irrespective of control type before, number of lanes and setting

No apparent relationship to inscribed or central island diameter.

CONCLUSIONS

- Models are reasonable and usable, but could be better
- Speed-based safety models promising but require additional data and research effort
- Solid before-after crash benefits support us being here at this conference!