The Dimondale Mini-Roundabout: First Mini in the States

Presenter:

Ed Waddell, Transportation Planner Michigan Dept. of Transportation**

E-copies of the Full Report are Available from: waddelle@michican.cov

** All views expressed are those of the presenter, and do not represent official statements of the State of Michigan or the Michigan Department of Transportation.**

The Dimondale Mini

- Opened May 30, 2001
- Built by Village of Dimondale
- 21-Meter (69) Inscribed Circle
- Fit Within Existing Curbs
- 4-Meter Traversable Central Island
- Illuminated Bollards
- Cost \$47,000
- and it Works.

Features

- LOW Cost
- Reduced Speed
- Saves Time
- Saves Gas
- Reduces Emissions
- Operates Safely
- Applicable at Many Locations

What's a Mini-Roundabout?

- Inscribed Circle Diameter 14 to 28 meters
- Central Island 4 Meters or Less
- Traversable for Large Vehicles
- Can't Install Signs on Traversable Island
- Pavement arrows show Movement Pattern
- Recommended in 30 MPH Zones

Where did Mini-Roundabouts Come From?

- Developed in 1960's by Road Research Laboratory, UK Department of Transport
- Frank Blackmore's Experiments
- The Authorities said NOT' to build one
- Frank was a World War II RAF Wing Commander NO FEAR!
- UK now has 2,000 Minis
- US has 2

Dimondale Location: Southwest Metro Lansing

Dimondale:

- Incorporated Village
- Population 1200
- Founded 1848
- 19th-Century Layout
- Mixed Land Use
- Popular for Walking and Bicycling
- Traffic conflicts with Peds and Bikes

Creyts Rd./East Rd. Intersection

Creyts / East Intersection:

$\square 45$-Degree WYE
\square Entry to Village from Lansing
\square All 2-lane Roads
\square Speed Limit 25
\square North and East Legs Stop-Controlled
\square West Leg Uncontrolled
\square Scheduled for Reconstruction in 2001
\square Intersection Type to be Determined

Previous Safety:

\square No significant crash history
\square Complaints about speeding eastbound
\square Eastbound Left turners cutting off southbound Creyts
\square Dimondale's Main Pedestrian Corridor

Constraints and Alternatives

Site Constraints:
\square Small corner donated by the gas station
\square Right-of-way for only a 21-meter inscribed circle
\square A central island would block trucks

Infeasible Alternatives:
\square No Action - Speeding and Ped Safety Concerns
\square Signal - Did not meet signal warrants
\square Roundabout: - Raised Island Wouldn't Fit

Practical Alternatives:

- All-Way-Stop Control (AWSC)
- Cheap
- Eastbound Not Accustomed to Stopping
- Feared Crashes
- Mini-Roundabout
- Nothing Known
- Which was the Better I nvestment?

Traffic:

$\square 1998$ entering ADT: 5,550 $\square 2020$ forecast ADT: 9,550 \square About 4\% Trucks
\square Major AM Move: West to North
$\square \mathrm{PM}$ is the Reverse

UK Safety Reports:

- Walker and Pittam (1989)

139 3-Leg, Domed Mini-roundabouts

3-Leg Minis, 30 MPH zones: 0.1 Injury Crash / MEV

Mini Injury Rate Less than any other intersection

- Other Reports also Very Favorable

Capacity and Delay:

- HCS 2000 estimate for all-way-stop
- Lab Report 942 (RODEL-1 at 50\% CL) for mini-roundabout
- Max 2020 V/C Ratio: . 37

Control Delay of AWSC vs. Mini (Seconds)

	AM Peak	PM Peak	Off Peak	TOTAL 2020 (Hours)
All-Way Stop	9.6	14.7	8.6	9,287
Mini	3.4	3.9	3.3	3,291
Time Saved	$\mathbf{6 . 2}$	$\mathbf{1 0 . 8}$	$\mathbf{5 . 3}$	$\mathbf{5 , 9 8 6}$ hrs

What's it Worth? Plenty.

20-Year Life-Cycle Delay Cost

	Total Delay 2002-2021 (Hours)	Net Present Value (2001 Dollars)
All-Way-Stop	144,060 Hours	$\$ 1,118,340$
Mini	53,956 Hours	$\$ 422,973$
Savings:	$\mathbf{9 0 , 1 0 4}$ Hours	$\mathbf{\$ 6 9 5 , 3 6 7}$

- Assumptions:
- AM and PM Peaks each occur 522 times per year
- Off Peak occurs 5531 times per year
- Time Value: $\$ 11.93$ per hour
- Discount Rate: 4\%

Comparison:

- Eliminates Delay Equal to 1 Vehicle Idling at a Stop Sign ... FOR 10 YEARS !
- Low Cost + Safety + Reduced Delay
- Village Directed Staff to Build a Mini

Design Phase

\square No Mini Designers in the US
\square Phoned the UK
\square Mini-roundabouts: Getting them Right!, by Clive Sawers
\square Vermont, Michigan, and Maryland arranged seminars by Mr. Sawers
\square Barry Crown agreed to help
\square USE EXPERIENCED HELP!

Design Cont'd

\square Sawers: Advance YIELD lines to swept paths of circulating vehicles

- Allows wider entry in compact space
- Intersection more compact
- Drivers do not overrun the yield line.
\square Crown: Advised against advancing that close
- As Diameter shrinks, intersection acts as all-way stop
\square We placed YIELD lines midway between the inscribed circle and the outer swept paths.

Design Cont'd

\square One lane entry was adequate

- Laid Out Inscribed circle
- Drew curbs and swept paths
- Established Westbound Deflection
- Located Blob and Splitter Islands
- 5-meter entries for Farm Equipment
- Bike Lanes end 100' from Yield Line
\square Sent it to Barry Crown (mini designer)
\square He Saved Us

Effect of the WYE

\square Trucks must overrun 2 Splitter Islands
\square Couldn't use raised curb for north splitter
\square Used rumble strips

- East Splitter needed raised splitter and bollard for deflection and visibility
- Crown recommended raised curb on the east end of the splitter
- Yellow paint delineates the west end of that splitter.
\square Not ideal, but necessary

Intersection Diagram

Field Check

\square Laid out the Mini with Chalk and Cones
\square Took turns driving it
\square On Drawing Board, Blob was Dead Center of the Circle
\square It Felt Awkward - required backtracking
\square We Moved the Blob 1-meter west
\square Valuable Step: Field Check the Design

The Blob and Arrows

\square Spherical Asphalt Section
$\square 4 \mathrm{~m}$ across, 120 mm high
\square Coated in White Thermoplastic
\square Drivers at each Yield Line see the Blob and an Arrow Pointing Right

Bollards:

\square Translucent plastic shells
\square Fluorescent lamp in base
\square Not in the US manual
\square UK warned against a mini without bollards
\square Blob and Arrows not visible until too late
\square Import: \$1060
\square Installation \$4500
\square Visible 800' - Day/Night
\square Attractive. Indestructible.
 A great Idea.

Signs and Markings:

\square ROUNDABOUT AHEAD 60 meters from yield line
\square YIELD AHEAD 30 meters from yield line
\square YIELD SIGN at yield line
\square YIELD LINES $500 \mathrm{~mm} \times 700 \mathrm{~mm}$ thermoplastic marks with 300mm gap
\square YIELD LEGEND at each Yield Line
\square "YIELD TO TRAFFIC IN CIRCLE"

- "YIELD TO CIRCLE TRAFFIC" may have been clearer
- (We Need the International Roundabout Sign)
\square PED XING SIGNS - Later removed

International Roundabout Sign

 This is the Roundabout. Circle Traffic has Priority.- Pavement Markings are Invisible Under Snow
- No Problem with a 3-Leg
- Big Problem with a 4-Leg
- Left Turns Differ
- Use it with the Yield Sign
- Sign Shows Where the Roundabout is
- Shows the Pattern of Movement
- WE NEED THIS SIGN !

Cost

(2001 Dollars)

\square Planning - \$ 250
\square Design
\square ROW
Donated
\square Construction - \$40,100
\square Total
\$47,350
\square Maintenance - \$200/Year

Effects:

- Speeds Changed
- EB Approach was 32 MPh, Now 24 MPH
- Other Approaches Slower - (More Deflection)
- Crashes Stayed the Same
- 5 Before, 1 Class B Injury (Drunk)
- 5 After, 2 Class C Injuries (Drunk)
- 1 PDO (Rear End) on SB Approach
- Annual Crash Cost Before: \$18,733
- Annual Crash Cost After:
\$18,000

Benefit/Cost \& Time of Return:

Benefits:

- Net Present Value of Delay Reduction: \$695,367
- Net Present Value of Maintenance:
- NET BENEFIT:

Costs:

- Total Project Development Cost:
- NET COST:
- Benefit/ Cost Ratio:
- Time of Return:
\$692,649
\$ 47,735
$\$ 47,735$
14.5: 1
1.4 years

Public Opinion and Driver Behavior

\square Folks made fun of our mini.

- Somebody proposed rubber statue of the Dimondale Street Administrator on the Blob
- People Complain - Human Nature
\square Complaints in 2001:
- "It was a big waste of money."
- "It confuses people."
- "They should have installed a stop sign."
$\square \ln 2005$
- Local Drivers use it with skill
- Common complaint: "Other drivers" don't know how to drive it
- Some still do stop unnecessarily
- A new local tradition: Make fun of the mini !
- It works.

Conclusions:

- 1. A Mini has been Built in Michigan
- 2. Delay Superior to All-Way-Stop or Signal
- 3. Reduces Fuel Consumption/Emissions.
- 4. Minis are Cheap.
- 5. Absence of a problem hurt public support.
- 6. IT WORKS !

Recommendations:

\square Cost Can be Reduced
\square New Signs are Needed
\square Consider "MIDI"- Roundabouts for Four-Leg Layouts

Major Implications:

- National Energy Implications
- A Cheap Solution
- Uncle Sam Needs New Thinking from us.
- Higher Capacity Sites:

