

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Presentation by Richard G. Sarchet, P.E. of the Colorado Department of Transportation at the TRB National Roundabout Conference in Vail, Colorado May 2005

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Why do we Install Traffic Signals?

- Because They Reduce Delay?
- Because The Location Meets Warrants?
- Because They Improve Safety?

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Why do we Install Traffic Signals?

- Because They Reduce Delay?
 - Replacing a 2-way stop with a Signal generally reduces delay on the *minor* road.
 - Replacing a 2-way stop with a Signal almost always increases total delay.
 - At certain side road volumes 2-way stop fails. Signal causes less delay than all-way stop.
 - Delay at Signals is distributed more equitably than at 2-way stops.

– Delay at a Roundabout is usually less than at a Signal.

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Why do we Install Traffic Signals?
Because They Reduce Delay?...Sometimes

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Why do we Install Traffic Signals?

- Because They Reduce Delay?
- Because The Location Meets Warrants?
- Because They Improve Safety?

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Why do we Install Traffic Signals?

- Because The Location Meets Warrants?
 - Every New Signal Studied was "Warranted"
 - Engineers, Politicians, Press and Public Fret Over Planned Signals that are "Warranted but Unfunded"
 - MUTCD Says:
 - "The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic signal"
 - and "A traffic control signal should not be installed unless an engineering study indicates that installing a traffic control signal will improve the overall safety and/or operation of the intersection."

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Why do we Install Traffic Signals?
Because The Location Meets Warrants?...Maybe

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Why do we Install Traffic Signals?

- Because They Reduce Delay?
- Because The Location Meets Warrants?
- Because They Improve Safety?

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

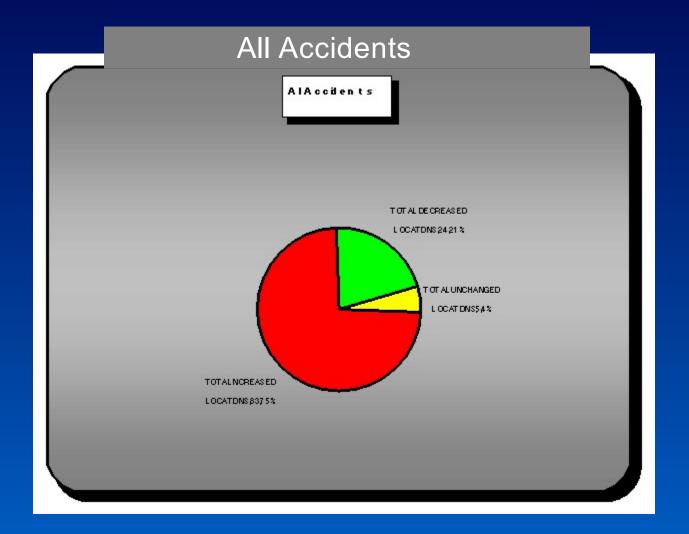
Why do we Install Traffic Signals?

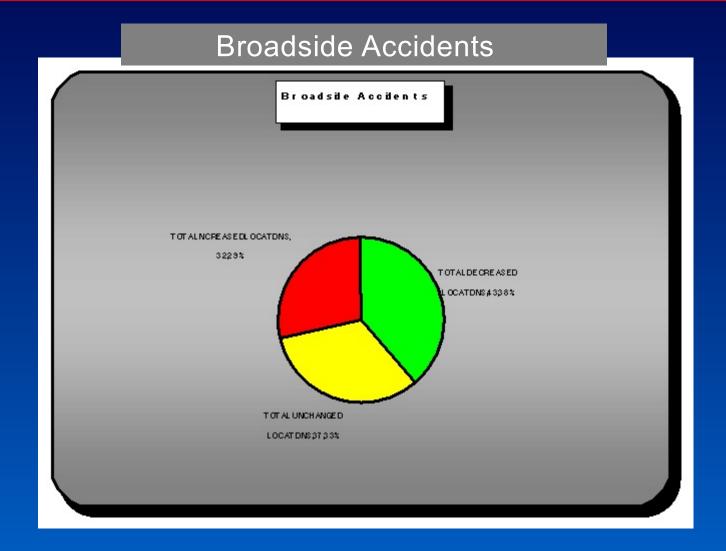
- Because They Improve Safety?
 - ITE Traffic Engineering Handbook says, "Traffic Engineers know that a traffic signal is not a panacea and can actually contribute to collisions, congestion, delay, and speeding."
 - Thomas and Smith of Iowa State University found rear end and "left turn" accidents increase with new signals, but overall crashes decrease slightly. (2001)
 - Voss of Kansas DOT found that new signals should be assigned an ARF of 45%. (1997)

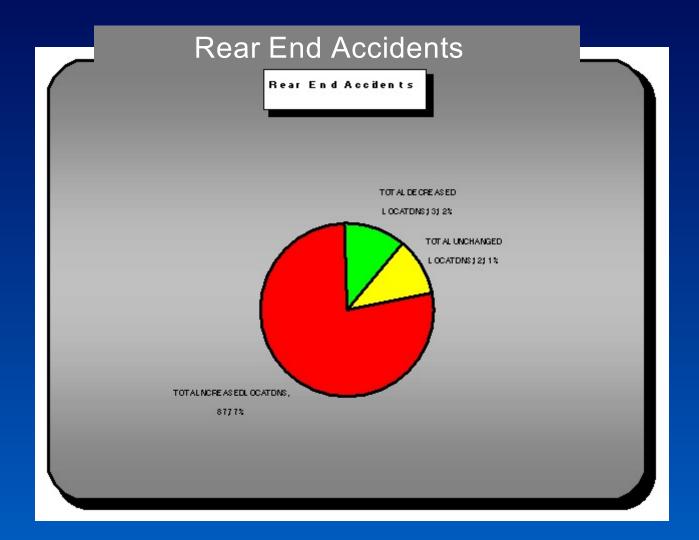
A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

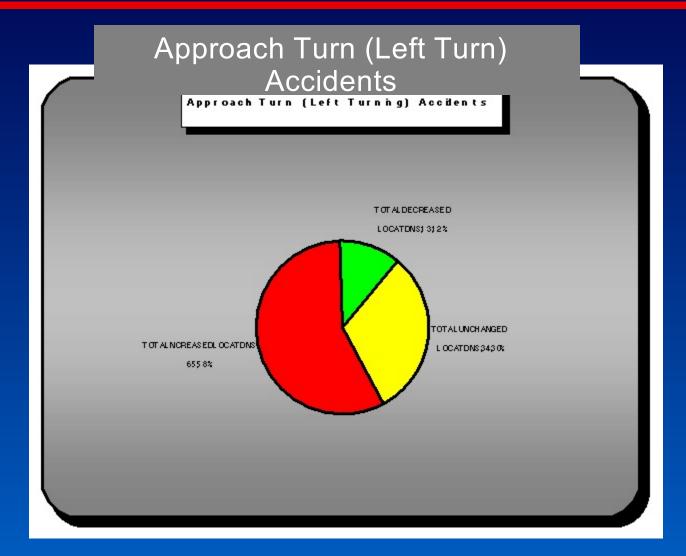
Why do we Install Traffic Signals?
Because They Improve Safety?

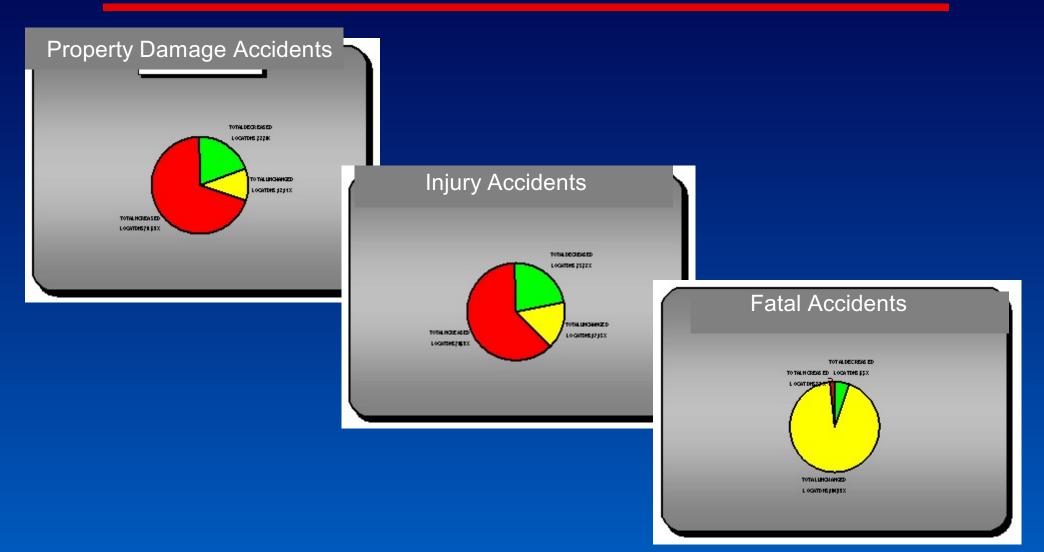
Do Traffic Signals Improve Safety?


A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Do Traffic Signals Improve Safety? Study Locations on Colorado Highways Intersections that became signalized Where data is available Compare 3 years Before and 3 years After Consider traffic volume growth


A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Site Selection Used Video Log to Identify Locations Found 112 Locations w/ Signals in 2002, Not in 1992 Which to Use for Sample?


STUDIED SIGNAL LOCATIONS											
Site #	.tiglay	MP	Video Log	Des ciptio n							
1	2B	11.10	1998	Hwy 2 (Hansen BV) at 64th Ave in Commerce City							
2	2B	12.37	1998	Hwy 2 (Hansen BV) at 72nd Ave (and Railroad Crossing) in Commerce City							
3	2C	15.61	1996	Hwy 2 at 96th Ave in Adams County							
4	2C	16.96	1994	Hwy 2 at Hwy 44 (104th Ave) in Adams County							
5	2D	0.58	1997	Hwy 2 (Sable Road) at Hwy 22 (124th Ave) in Brighton							
6	6E	166.00	1995	Hwy6 at I-70 Business Spur in Eagle County near Edwards							
7	7A	0.34	1997	Hwy7 (South Saint Vrain Ave) at Manford Dr. in Estes Park							
8	7B	46.27	1998	Hwy 7 (Broadway) at Old Stage Road/Lee Hill Road in Boulder							
9	7B	46.77	1998	Hwy 7 (Broadway) at Violet Avenue in Boulder							
10	7B	48.64	1998	Hwy7 (Broadway) at CedarAvenue in Boulder							
11	7B	48.97	1998	Hwy 7 (Broadway) at Portland Place/Bluff Street in Boulder							
12	7B	50.53	1996	Hwy 7 (Canyon Boulevard) at 26th Avenue							
13	7C	54.92	1998	Hwy7 (Arapahoe Avenue) at Cherrwale Road in Bouler							
14	7D	62.13	1998	Hwy7 (Baseline Road) at Carr Avenue in Lafayette							
15	7D	62.38	1998	Hwy 7 (Baseline Road) at 111th Street/Christopher Street in Lafayette							
16	7D	63.22	1998	Hwy 7 (Baseline Road) at 119th Street in Lafayette							
17	7D	77.59	1998	Hwy 7 (Bridge Street) at 8th Avenue in Brighton							
18	9C	87.17	1998	Hwy9 (Main Street) at ? near Breckenridge							
19	9C	87.80	1998	Hwy9 (Main Street) at Valley Brook Road/Bikeway near Breckenridge							


A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Analysis Data from CDOT Accident History Database


R	SEVERITY						#0	VEHICL	ES											
sib #	liptes	Highway			to miliabonit	វិហិកា ដងខេ	to date	Property Damage Only	Injury Crash	Fatal Crash	¹ njured	Killed	1 다려.	2 cars	04 Cats	On Road	Off Road	Оувнцпл	School Age PedstHan	Other Pedestrian
1	Before Signalization - Urban	2					12/31/1996	8	7	0	11	0	2	11	2	13	2	0	0	0
1	After Signalization - Urban	2	_	11.08		1/1/1999	12/31/2001	10	3	0	- 7	0	2	11	0	11	2	0	0	0
1	Change (Atter-Before)	2		11.08	11.12			2	-4	0	-4	0	0	0	-2	-2	0	0	0	0
2	Before Signalization - Urban	2					12/31/1994	18	12	0	14	0	7	22	1	26	4	0	0	2
2	After Signalization - Urban	2		12.35		1/1/1997	12/31/1999	18	9	0	11	0	- 4	22	0	24	3	0	0	1
2	Change (Atter-Before)	2		12.35	12.39			0	-3	0	-3	0	-3	0	-1	-2	-1	0	0	-1
3	Before Signalization - Urban	2	С	15.59	15.63	1/1/1992	12/31/1994	8	9	1	11	1	2	15	1	16	2	0	0	0
3	After Signalization - Urban	2	С	15.59	15.63	1/1/1997	12/31/1999	2	5	0	10	0	0	7	0	7	0	0	0	0
3	Change (Atter-Before)	2	С	15.59	15.63			-6	-4	-1	-1	-1	-2	-8	-1	-9	-2	0	0	0
4	Before Signalization - Urban	2	С	16.94	16.98	1/1/1990	12/31/1992	7	7	0	15	0	0	13	1	14	0	0	0	0
4	After Signalization - Urban	2	С	16.94	16.98	1/1/1995	12/31/1997	3	2	0	6	0	1	4	0	- 4	1	0	0	0
4	Change (Atter-Before)	2	С	16.94	16.98			-4	-5	0	-9	0	1	9	-1	-10	1	0	0	0
5	Before Signalization - Urban	2	D	0.56	0.6	1/1/1994	12/31/1996	0	0	0	0	0	0	0	0	0	0	0	0	0
5	After Signalization - Urban	2	D	0.56	0.6	1/1/1999	12/31/2001	0	1	0	1	0	1	0	0	0	1	1	0	0
5	Change (Ater-Before)	2	D	0.56	0.6			0	1	0	1	0	1	0	0	0	1	1	0	0
6	Before Signalization - Rural	6					12/31/1994	10	8	0	14	0	1	16	1	17	1	0	0	0
6	After Signalization - Rural	6	_	165.98	166.02	1/1/1996	12/31/1998	23	15	0	22	0	0	33	5	38	0	0	0	0
6	Change (Ater-Before)	6	E	165.98 <mark>-</mark>	166.02			13	7	0	8	0	-1	17	4	21	-1	0	0	0

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Analysis These Decreased in the After Period

- Fatal Crashes
- Persons Killed
- School Aged Pedestrian Struck
- Broadside
- Overtaking Turn
- Bicycle Struck
- ► Dark, Not Lighted
- Motor Home (At Fault)
- Motorcycle (At Fault)
- Driver Emotionally Upset
- Driver Evading Law Enforcement
- Driver Physically Disabled
- Driver Under Influence of Alcohol and Drugs

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Analysis

These Were Unchanged in the After Period

- Bicycle (At Fault)
- Driver Under Influence of Illegal Drugs

All Others Were Increased (49 Attributes)

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Analysis

95% Confidence Intervals Were Constructed

- These DECREASED by an Amount Significantly Different Than Zero
 - Broadside
 - Overtaking Turn

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Analysis

95% Confidence Intervals Were Constructed

- 31 Attributes Were INCREASED by an Amount Significantly Different Than Zero.
- ▶ 9 Attributes INCREASED Significantly More Than 50%
 - Property Damage Only Crashes
 - Crashes Involving 3 or More Vehicles
 - Crashes on the Roadway
 - Rear Ends
 - Approach Turns
 - Dark, Lighted
 - Pickup Truck or Utility Van (At Fault)
 - Driver Inexperienced

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Analysis

95% Confidence Intervals Were Constructed

- 31 Attributes Were INCREASED by an Amount Significantly Different Than Zero.
- ▶ 9 Attributes INCREASED Significantly More Than 50%
 - Property Damage Only Crashes
 - Crashes Involving 3 or More Vehicles
 - Crashes on the Roadway
 - Rear Ends
 - Approach Turns
 - Dark, Lighted
 - Pickup Truck or Utility Van (At Fault)
 - Driver Inexperienced
 - Total Number of Crashes

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Attributes Significantly Reduced Relative to Change in Highway Traffic Volume
 - Collisions Involving a School Aged Pedestrian
 - Broadside Collisions
 - Overtaking Turn Collisions
 - Motor Home as the At-Fault Vehicle

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Attributes Significantly Reduced Relative to Change in Highway Traffic Volume
 - Collisions Involving a School Aged Pedestrian
 - Broadside Collisions
 - Overtaking Turn Collisions
 - Motor Home as the At-Fault Vehicle

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Severity Measures Increased Significantly Beyond Change in Highway Traffic Volume
 - Property Damage Only Collisions
 - Injury Collisions
 - Total Persons Injured

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Collisions Under The Following Conditions Increased Significantly Beyond Change in Highway Traffic Volume
 - Daylight
 - Dawn or Dusk
 - Darkness, at Illuminated Locations
 - Good Weather
 - Rain
 - Snow, Sleet or Hail
 - Dry Road
 - Wet Road

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Collisions Where Drivers of the Following Vehicle Types Were At Fault Increased Significantly Beyond Change in Highway Traffic Volume
 - Passenger Cars and Vans
 - Pickups and Utility Vehicles
 - Heavy Trucks and Busses
 - Unknown (Hit and Run) Vehicles

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Collisions Involving The Following Apparent Human Factors Increased Significantly Beyond Change in Highway Traffic Volume
 - No Apparent Contributing Human Factor
 - Driver Inexperience
 - Driver Preoccupied

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Collisions Types Increased Significantly Beyond Change in Highway Traffic Volume
 - Rear End
 - Approach Turn (Left Turning)

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Conclusions

Safety Was Generally Not Improved

- Accidents Increased at 75% of Locations
- Accidents Increased by 74.6% while AADT Increased 19.3%
- 26 Attributes Were Increased Significantly More Than AADT
- Only 4 Attributes Were Decreased Significantly Relative to AADT

Increases Followed Signalization

Signalization Isn't Necessarily Cause of Each Increase
Lacking other arguments, signalization is the most likely culprit.

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways Conclusions

The Bad News is Good News

- Rear Ends Increased at 77% of Locations
- Rear Ends Increased by 165%
- Increase in Rear Ends = 64% of Increase in Total Accidents
- Approach Turns Increased at 58% of Locations
- Approach Turns Increased by 150%
- Increase in Approach Turns = 34% of Total Increase

How is That Good?

- Rear End Countermeasures (Dilemma Prevention, Signal Progression) Approach 50% Reduction
- Fully Protected Lefts Reduce Approach Turn by 90%+
- Roundabouts Don't Have Approach Turn and Reduce Rear End

- MUTCD says, "A traffic signal should not be installed unless an engineering study indicates that installing a traffic signal will improve the overall safety and/or operation of the intersection."
- Traffic Engineers should strive to improve safety AND operation (though many of the studied signals apparently improved neither).
- By thoughtfully considering HCM, available countermeasures for the (now expected) safety impacts and appropriate alternatives, we should be able to improve both.

