Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Presentation by Richard G. Sarchet, P.E.
of the Colorado Department of Transportation
at the TRB National Roundabout Conference
in Vail, Colorado
May 2005
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Why do we Install Traffic Signals?
- Because They Reduce Delay?
- Because The Location Meets Warrants?
- Because They Improve Safety?
Why do we Install Traffic Signals?

Because They Reduce Delay?
- Replacing a 2-way stop with a Signal generally reduces delay on the minor road.
- Replacing a 2-way stop with a Signal almost always increases total delay.
 - At certain side road volumes 2-way stop fails. Signal causes less delay than all-way stop.
 - Delay at Signals is distributed more equitably than at 2-way stops.
 - Delay at a Roundabout is usually less than at a Signal.
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

- Why do we Install Traffic Signals?
 - Because They Reduce Delay?...Sometimes
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Why do we Install Traffic Signals?
- Because They Reduce Delay?
- Because The Location Meets Warrants?
- Because They Improve Safety?
Why do we Install Traffic Signals?

- Because The Location Meets Warrants?
- Every New Signal Studied was “Warranted”
- Engineers, Politicians, Press and Public Fret Over Planned Signals that are “Warranted but Unfunded”
- MUTCD Says:
 - “The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic signal”
 - and “A traffic control signal should not be installed unless an engineering study indicates that installing a traffic control signal will improve the overall safety and/or operation of the intersection.”
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

- Why do we Install Traffic Signals?
 - Because The Location Meets Warrants? ...Maybe
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

- Why do we Install Traffic Signals?
 - Because They Reduce Delay?
 - Because The Location Meets Warrants?
 - Because They Improve Safety?
Signalization and Safety

Why do we Install Traffic Signals?

Because They Improve Safety?

- ITE *Traffic Engineering Handbook* says, “Traffic Engineers know that a traffic signal is not a panacea and can actually contribute to collisions, congestion, delay, and speeding.”
- Thomas and Smith of Iowa State University found rear end and “left turn” accidents increase with new signals, but overall crashes decrease slightly. (2001)
- Voss of Kansas DOT found that new signals should be assigned an ARF of 45%. (1997)
Why do we install traffic signals?
- Because they improve safety?

Do traffic signals improve safety?
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Do Traffic Signals Improve Safety?

- Study Locations on Colorado Highways
 - Intersections that became signalized
 - Where data is available

- Compare 3 years Before and 3 years After
 - Consider traffic volume growth
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Site Selection

- Used Video Log to Identify Locations
 - Found 112 Locations w/ Signals in 2002, Not in 1992
 - Which to Use for Sample?

<table>
<thead>
<tr>
<th>Site #</th>
<th>Highway</th>
<th>MP</th>
<th>Video Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2B</td>
<td>11.10</td>
<td>1998</td>
<td>Hwy 2 (Hansen BV) at 64th Ave in Commerce City</td>
</tr>
<tr>
<td>2</td>
<td>2B</td>
<td>12.37</td>
<td>1998</td>
<td>Hwy 2 (Hansen BV) at 72nd Ave (and Railroad Crossing) in Commerce City</td>
</tr>
<tr>
<td>3</td>
<td>2C</td>
<td>15.61</td>
<td>1996</td>
<td>Hwy 2 at 86th Ave in Adams County</td>
</tr>
<tr>
<td>4</td>
<td>2C</td>
<td>16.96</td>
<td>1994</td>
<td>Hwy 2 at Hwy 44 (104th Ave) in Adams County</td>
</tr>
<tr>
<td>5</td>
<td>2D</td>
<td>0.56</td>
<td>1997</td>
<td>Hwy 2 (Sable Road) at Hwy 22 (124th Ave) in Brighton</td>
</tr>
<tr>
<td>6</td>
<td>6E</td>
<td>166.00</td>
<td>1995</td>
<td>Hwy 6 at I-70 Business Spur in Eagle County near Edwards</td>
</tr>
<tr>
<td>7</td>
<td>7A</td>
<td>0.34</td>
<td>1997</td>
<td>Hwy 7 (South Saint Vrain Ave) at Manford Dr. in Estes Park</td>
</tr>
<tr>
<td>8</td>
<td>7B</td>
<td>46.27</td>
<td>1998</td>
<td>Hwy 7 (Broadway) at Old Stage Road/lee Hill Road in Boulder</td>
</tr>
<tr>
<td>9</td>
<td>7B</td>
<td>46.77</td>
<td>1998</td>
<td>Hwy 7 (Broadway) at Violet Avenue in Boulder</td>
</tr>
<tr>
<td>10</td>
<td>7B</td>
<td>48.64</td>
<td>1998</td>
<td>Hwy 7 (Broadway) at Cedar Avenue in Boulder</td>
</tr>
<tr>
<td>11</td>
<td>7B</td>
<td>48.97</td>
<td>1998</td>
<td>Hwy 7 (Broadway) at Portland Place/Bluff Street in Boulder</td>
</tr>
<tr>
<td>12</td>
<td>7B</td>
<td>50.53</td>
<td>1996</td>
<td>Hwy 7 (Canyon Boulevard) at 26th Avenue</td>
</tr>
<tr>
<td>13</td>
<td>7C</td>
<td>54.92</td>
<td>1998</td>
<td>Hwy 7 (Arapahoe Avenue) at Cherryvale Road in Boulder</td>
</tr>
<tr>
<td>14</td>
<td>7D</td>
<td>62.13</td>
<td>1998</td>
<td>Hwy 7 (Baseline Road) at Carr Avenue in Lafayette</td>
</tr>
<tr>
<td>15</td>
<td>7D</td>
<td>62.36</td>
<td>1998</td>
<td>Hwy 7 (Baseline Road) at 111th Street/Christopher Street in Lafayette</td>
</tr>
<tr>
<td>16</td>
<td>7D</td>
<td>63.22</td>
<td>1998</td>
<td>Hwy 7 (Baseline Road) at 119th Street in Lafayette</td>
</tr>
<tr>
<td>17</td>
<td>7D</td>
<td>77.59</td>
<td>1998</td>
<td>Hwy 7 (Bridge Street) at 8th Avenue in Brighthouse</td>
</tr>
<tr>
<td>18</td>
<td>9C</td>
<td>87.17</td>
<td>1998</td>
<td>Hwy 9 (Main Street) at ? near Breckenridge</td>
</tr>
<tr>
<td>19</td>
<td>9C</td>
<td>87.00</td>
<td>1990</td>
<td>Hwy 9 (Main Street) at Valley Brook Road/Keeway near Breckenridge</td>
</tr>
</tbody>
</table>
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- **Data from CDOT Accident History Database**

<table>
<thead>
<tr>
<th>Site #</th>
<th>Notes</th>
<th>Highway</th>
<th>Section</th>
<th>From Intersection</th>
<th>To Intersection</th>
<th>From Date</th>
<th>To Date</th>
<th>Property Damage Only</th>
<th>Injury Crash</th>
<th>Fatal Crash</th>
<th>Injured</th>
<th>Killed</th>
<th>1 car</th>
<th>2 cars</th>
<th>3 cars</th>
<th>On Road</th>
<th>Off Road</th>
<th>Overturn</th>
<th>School Age Ped</th>
<th>Other Pedestrian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Before Signalization - Urban</td>
<td>B</td>
<td>11.08</td>
<td>11.12</td>
<td>1/1/1994</td>
<td>12/31/1996</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>After Signalization - Urban</td>
<td>B</td>
<td>11.08</td>
<td>11.12</td>
<td>1/1/1999</td>
<td>12/31/2001</td>
<td>79</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Change (After-Before)</td>
<td>B</td>
<td>11.08</td>
<td>11.12</td>
<td>1/1/1999</td>
<td>12/31/2001</td>
<td>76</td>
<td>-4</td>
<td>0</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Before Signalization - Urban</td>
<td>B</td>
<td>12.35</td>
<td>12.39</td>
<td>1/1/1992</td>
<td>12/31/1994</td>
<td>18</td>
<td>12</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>7</td>
<td>22</td>
<td>1</td>
<td>26</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>After Signalization - Urban</td>
<td>B</td>
<td>12.35</td>
<td>12.39</td>
<td>1/1/1997</td>
<td>12/31/1999</td>
<td>18</td>
<td>9</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>4</td>
<td>22</td>
<td>0</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Change (After-Before)</td>
<td>B</td>
<td>12.35</td>
<td>12.39</td>
<td>1/1/1997</td>
<td>12/31/1999</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Before Signalization - Urban</td>
<td>B</td>
<td>15.59</td>
<td>15.63</td>
<td>1/1/1992</td>
<td>12/31/1994</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>After Signalization - Urban</td>
<td>B</td>
<td>15.59</td>
<td>15.63</td>
<td>1/1/1997</td>
<td>12/31/1999</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Change (After-Before)</td>
<td>B</td>
<td>15.59</td>
<td>15.63</td>
<td>1/1/1997</td>
<td>12/31/1999</td>
<td>6</td>
<td>-4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-1</td>
<td>-9</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Before Signalization - Urban</td>
<td>B</td>
<td>16.94</td>
<td>16.98</td>
<td>1/1/1990</td>
<td>12/31/1992</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>1</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>After Signalization - Urban</td>
<td>B</td>
<td>16.94</td>
<td>16.98</td>
<td>1/1/1995</td>
<td>12/31/1997</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Change (After-Before)</td>
<td>B</td>
<td>16.94</td>
<td>16.98</td>
<td>1/1/1995</td>
<td>12/31/1997</td>
<td>-4</td>
<td>-5</td>
<td>0</td>
<td>-9</td>
<td>0</td>
<td>1</td>
<td>-9</td>
<td>-1</td>
<td>-10</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Before Signalization - Urban</td>
<td>D</td>
<td>0.58</td>
<td>0.6</td>
<td>1/1/1994</td>
<td>12/31/1996</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>After Signalization - Urban</td>
<td>D</td>
<td>0.58</td>
<td>0.6</td>
<td>1/1/1999</td>
<td>12/31/2001</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Change (After-Before)</td>
<td>D</td>
<td>0.58</td>
<td>0.6</td>
<td>1/1/1999</td>
<td>12/31/2001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Before Signalization - Rural</td>
<td>E</td>
<td>165.98</td>
<td>166.02</td>
<td>1/1/1992</td>
<td>12/31/1994</td>
<td>10</td>
<td>8</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>After Signalization - Rural</td>
<td>E</td>
<td>165.98</td>
<td>166.02</td>
<td>1/1/1996</td>
<td>12/31/1998</td>
<td>23</td>
<td>15</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>5</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Change (After-Before)</td>
<td>E</td>
<td>165.98</td>
<td>166.02</td>
<td>1/1/1996</td>
<td>12/31/1998</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>-1</td>
<td>17</td>
<td>4</td>
<td>21</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Signalization and Safety

All Accidents

- Total Increased Locations: 83.75%
- Total Decreased Locations: 4.21%
- Total Unchanged Locations: 5.5%
Signalization and Safety

Broadside Accidents

- Total increased locations: 32% of total
- Total decreased locations: 52% of total
- Total unchanged locations: 16% of total

Diagram showing the distribution of broadside accidents.
Signalization and Safety

Rear End Accidents

- Total Decreased Locations: 33.2%
- Total Increased Locations: 67.7%
- Total Unchanged Locations: 9.1%
Signalization and Safety

Approach Turn (Left Turn) Accidents

- Decreased Locations: 31.2%
- Increased Locations: 65.5%
- Unchanged Locations: 3.3%
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

These Decreased in the After Period

- Fatal Crashes
- Persons Killed
- School Aged Pedestrian Struck
- Broadside
- Overtaking Turn
- Bicycle Struck
- Dark, Not Lighted
- Motor Home (At Fault)
- Motorcycle (At Fault)
- Driver Emotionally Upset
- Driver Evading Law Enforcement
- Driver Physically Disabled
- Driver Under Influence of Alcohol and Drugs
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- These Were Unchanged in the After Period
 - Bicycle (At Fault)
 - Driver Under Influence of Illegal Drugs

- All Others Were Increased (49 Attributes)
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- 95% Confidence Intervals Were Constructed
 - These DECREASED by an Amount Significantly Different Than Zero
 - Broadside
 - Overtaking Turn
Signalization and Safety
A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

95% Confidence Intervals Were Constructed

- 31 Attributes Were INCREASED by an Amount Significantly Different Than Zero.
- 9 Attributes INCREASED Significantly More Than 50%
 - Property Damage Only Crashes
 - Crashes Involving 3 or More Vehicles
 - Crashes on the Roadway
 - Rear Ends
 - Approach Turns
 - Dark, Lighted
 - Pickup Truck or Utility Van (At Fault)
 - Driver Inexperienced
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- 95% Confidence Intervals Were Constructed
 - 31 Attributes Were INCREASED by an Amount Significantly Different Than Zero.
 - 9 Attributes INCREASED Significantly More Than 50%
 - Property Damage Only Crashes
 - Crashes Involving 3 or More Vehicles
 - Crashes on the Roadway
 - Rear Ends
 - Approach Turns
 - Dark, Lighted
 - Pickup Truck or Utility Van (At Fault)
 - Driver Inexperienced
 - Total Number of Crashes
A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Attributes Significantly Reduced Relative to Change in Highway Traffic Volume
 - Collisions Involving a School Aged Pedestrian
 - Broadside Collisions
 - Overtaking Turn Collisions
 - Motor Home as the At-Fault Vehicle
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Attributes Significantly Reduced Relative to Change in Highway Traffic Volume
 - Collisions Involving a School Aged Pedestrian
 - Broadside Collisions
 - Overtaking Turn Collisions
 - Motor Home as the At-Fault Vehicle
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Severity Measures Increased Significantly Beyond Change in Highway Traffic Volume
 - Property Damage Only Collisions
 - Injury Collisions
 - Total Persons Injured
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 ▶ Collisions Under The Following Conditions Increased Significantly Beyond Change in Highway Traffic Volume
 – Daylight
 – Dawn or Dusk
 – Darkness, at Illuminated Locations
 – Good Weather
 – Rain
 – Snow, Sleet or Hail
 – Dry Road
 – Wet Road
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Collisions Where Drivers of the Following Vehicle Types Were At Fault Increased Significantly Beyond Change in Highway Traffic Volume
 - Passenger Cars and Vans
 - Pickups and Utility Vehicles
 - Heavy Trucks and Busses
 - Unknown (Hit and Run) Vehicles
Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After

95% Confidence Intervals Compared to 19.30% (Rather Than Zero)

- Collisions Involving The Following Apparent Human Factors Increased Significantly Beyond Change in Highway Traffic Volume
 - No Apparent Contributing Human Factor
 - Driver Inexperience
 - Driver Preoccupied
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Analysis

- Traffic Volume (AADT) Increased by 19.30% (Average) from Before to After
- 95% Confidence Intervals Compared to 19.30% (Rather Than Zero)
 - Collisions Types Increased Significantly Beyond Change in Highway Traffic Volume
 - Rear End
 - Approach Turn (Left Turning)
A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Conclusions

- **Safety Was Generally Not Improved**
 - Accidents Increased at 75% of Locations
 - Accidents Increased by 74.6% while AADT Increased 19.3%
 - 26 Attributes Were Increased Significantly More Than AADT
 - Only 4 Attributes Were Decreased Significantly Relative to AADT

- **Increases Followed Signalization**
 - Signalization Isn’t Necessarily Cause of Each Increase
 - Lacking other arguments, signalization is the most likely culprit.
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Conclusions

- **The Bad News is Good News**
 - Rear Ends Increased at 77% of Locations
 - Rear Ends Increased by 165%
 - Increase in Rear Ends = 64% of Increase in Total Accidents
 - Approach Turns Increased at 58% of Locations
 - Approach Turns Increased by 150%
 - Increase in Approach Turns = 34% of Total Increase

- **How is That Good?**
 - Rear End Countermeasures (Dilemma Prevention, Signal Progression) Approach 50% Reduction
 - Fully Protected Lefts Reduce Approach Turn by 90%+
 - Roundabouts Don’t Have Approach Turn and Reduce Rear End
Conclusions

- MUTCD says, “A traffic signal should not be installed unless an engineering study indicates that installing a traffic signal will improve the overall safety and/or operation of the intersection.”
- Traffic Engineers should strive to improve safety AND operation (though many of the studied signals apparently improved neither).
- By thoughtfully considering *HCM*, available countermeasures for the (now expected) safety impacts and appropriate alternatives, we should be able to improve both.
Signalization and Safety

A Study of the Safety Effects of Signalizing Intersections on Colorado State Highways

Thank You!