Roundabout Access for Visually Impaired Pedestrians:

Evaluation of a Yielding Vehicle Alerting System for Double-Lane Roundabouts

Vaughan W Inman, PhD. SAIC Gregory W. Davis, PhD. FHWA Dona Sauerburger Certified Orientation and Mobility Specialist

Problem for Pedestrians with Visual Impairment at Double-Lane Roundabouts
Drivers Don't Yield
Conditions for Detecting Gaps by Sound

- are not Good
- Crossable Gaps May be Infrequent

Approach: Two Studies

- Closed Course
 Evaluation of Pavement
 Treatment
 - Will pedestrians with severe visual impairment benefit from pavement treatment to alert them to the presence of stopped vehicles?
- Observations at operating Double-Lane Roundabout
 - Will pedestrians with severe visual impairment benefit from pavement treatment to alert them to the presence of stopped vehicles?
 - Can signage increase driver yields to pedestrians?

The Alerting System

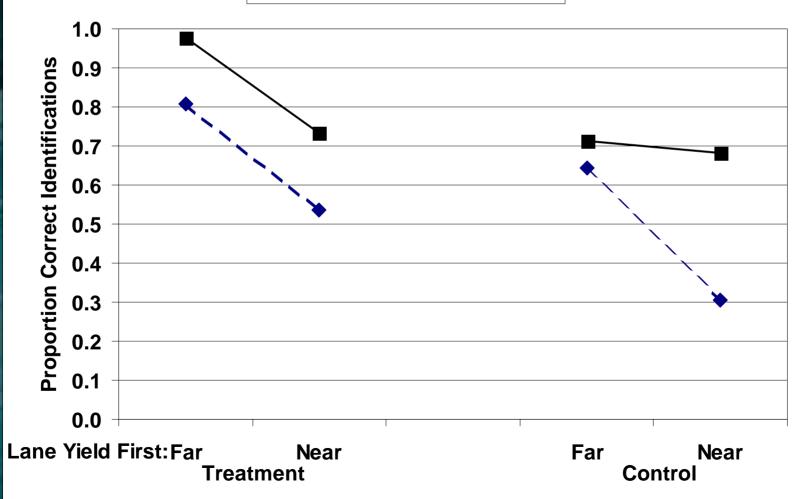
- 1.5 inch PVC Pipe secured to roadway with asphalt tape
- Three strips
 - Parallel to upstream edge of crosswalk
 - 20 ft upstream of crosswalk
 - 24 ft upstream of crosswalk
- Each strip generates a distinct clack when a wheel passes over it

Nomenclature

• Both Lanes Blocked: - Two Vehicle Have Stopped, One Blocking Each of Two Exit Lanes • Near Lane: - Right Lane • Far Lane: - Left Lane

Closed Course Evaluation

- Seven Participants with Severe Visual Impairment
- Two conditions: Treatment (with) and Control (without)
- 18 Trials in Each Condition


 Near Lane Yields First 8 trials
 Far Lane Yields First 6 trials
 - Both lanes yield together 4 trials

Results - Detection of Both Lanes Blocked

Participant	Hits Control	Hits Treatment	False Alarms Control	False Alarms TreatmentMisses Control		Misses Treatment	
1	47%	87%	7%	7%	47%	7% dabou	
2	19%	69%	69% 13% 1		69%	25%	
3	50%	50%	13%	13%	38%	38% offerer	
4	19%	38%	6%	13%	75%	50% ^{1)Ce} 2	
5	44%	63%	0%	13%	56%	25% 09	
6	63%	56%	31%	13%	6%	31% DRA	
7	13%	38%	0%	19%	88%	44%	
Mean	36%	57%	10%	13%	54%	31%	

Results - Correct Identifications by Lane

- ← - Far Lane — I ← Near Lane

Closed Course Conclusion

- Most Participants Benefited without
 Need for Training
 - Detections Increase, Misses Decrease, False Alarms Unchanged
 - False Alarm Rate is Potential Problem
 - Performance After Training was Not Evaluated

Field Evaluation

Evaluate Alerting System in Real World
Observe Driver Response to Pedestrians with Visual Impairment
Evaluate Effect of MUTCD R1-6 on Yielding Behavior

Treatment Condition

Roundabout

Inscribed Circle Diameter 159 ft
Exit has Two 16 ft Lanes
Red Brick Textured Crosswalk
~ 800 Vehicles per Hour

Procedure

Control Condition:

Observations in Two Weeks Before Treatment Between 5 and 6:30 PM

Treatment Condition:

Observations Between 3:30 and 5 PM

Trial

- Trial Ends When:
 - Participant Detects Both Lanes Block (whether correct or not)
 - Either Lane Blocked for 10 s or More and Traffic Backs Up
 - Participant Fails to Detect Both Lanes Blocked within 10 s
 - Good Samaritan Intervenes
 - Three Minutes Elapse without a Detection

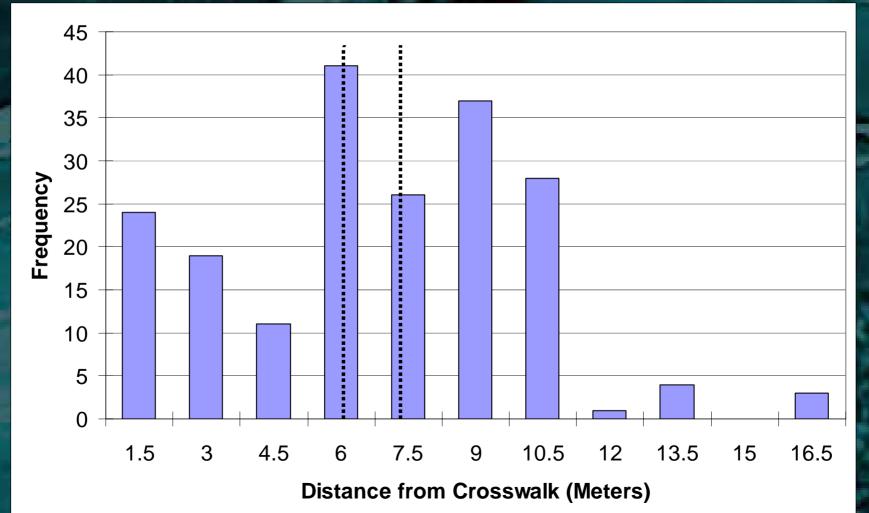
Results - Driver Behavior

Driver Behavior	Control	Treatment	Total
Stopped	115	158	273
Continued without Stopping	881	790	1671
Total	996	948	1944

Mean Time of Stop

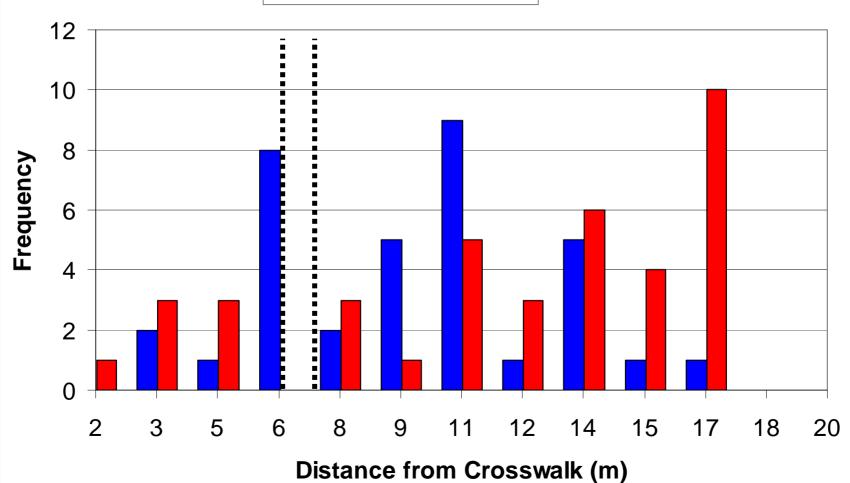
 Control Condition: 10.8 s
 Treatment Condition: 4.7 s

Results - Crossing Outcomes


lational

Rou

	1		Control	Treatment	Control				Control	Treatment
	Control	Treatment	False	False	Time	Treatment	Control	Treatment	Good	Good
Participant	Hits	Hits	Alarm	Alarm	Out	Time Out	Miss	Miss	Sam	Sam
2	19%	20%	19%	7%	13%	7%	19%	27%	31%	40%
3	43%	14%	36%	14%	14%	43%	0%	24%	7%	5% <mark>0</mark>
4	8%	6%	17%	0%	8%	50%	33%	25%	33%	19% e
5	15%	6%	0%	0%	38%	56%	0%	13%	46%	25%
7	10%	11%	0%	6%	50%	28%	0%	39%	40%	17%
Mean	19%	12%	14%	5%	25%	37%	32%	21%	10%	25%



Most Vehicles Stopped without Triggering Alert (near lane)

Far Lane Stops -Distance to Crosswalk

Control E Treatment

If Participants Could Immediately Detect Both Lanes Blocked, How Long Would They Need to Wait?

	Time (min:sec)	# Passing Veh.
Max	4:05	47.0
Min	0:00	0.0
Average	1:03	8.9
15th %ile	0:16	0.0
85th %ile	2:05	19.1
Number of Trials	74	

 Record Time from Beginning of Trial Until both Lanes are Blocked

Exclude Trials Where Good Samaritan Interfered

Exclude Trials that End in Timeout

Conclusions

- The Alerting System Can Improve Detection If It is Triggered
 - This was True Without Training
- The Alerting System Did Not Eliminate False Alarms
- Drivers Often Stop Far from the Crosswalk
- In Street MUTCD R1-6 May Increase Stopping, but Not Patience

Recommendations

- Examine Effect of Crosswalk Setback on Where Drivers Stop and Where Pedestrians Cross
- Evaluate Alerting System for Single-Lane Roundabouts Where False Alarms are Less Likely to be a Problem

For Further Information Contact

Vaughan W. Inman, PhD. Science Applications International Corporation 6300 Georgetown Pike McLean, VA 22101 inmanv@saic.com

Gregory W. Davis, PhD. Federal Highway Administration, Office of Safety RD&T 6300 Georgetown Pike McLean, VA 22101 gregory.davis@fhwa.dot.gov

Dona Sauerburger Certified Orientation and Mobility Specialist 1606 Huntcliff Way Gambrills, MD 21054 sauerburger@mindspring.com