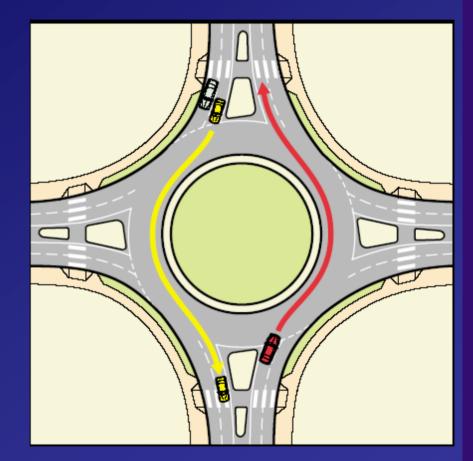
High-Capacity Roundabout Intersection Analysis: Going Around in Circles

David Stanek, PE & Ronald T. Milam, AICP

TRB National Roundabout Conference May 24, 2005 Vail, CO

DRAF


Presentation Overview

- What is a high-capacity roundabout?
- What methods are used to analyze traffic operations?
- How are these methods applied to realworld problems?
- What are the differences in analysis results between methods?
- Which method should be used for a given set of conditions?

High-Capacity Roundabout

- Modern roundabout with yield entry
- Approaches with 2 or more lanes
- An alternative to traffic signals for high-volume locations

Roundabout Analysis Methods

- Highway Capacity Manual (TRB, 2000)
 - Only one-lane roundabouts
 - LOS thresholds are undefined
- Roundabouts: An Informational Guide (FHWA, 2000)
 - Equations for two-lane roundabouts
 - Design to v/c of 0.85
 - List of analysis software

Roundabout Analysis Methods

- Macroscopic Models (Isolated)

 Analyze vehicle flows
 Methods: RODEL & SIDRA
- Microscopic Models (System)

 Analyze individual vehicles & drivers
 Methods: SimTraffic, Paramics, & VISSIM

RODEL

- Barry Crown, UK
- Regression equations based on observations of UK intersections
- Design elements determine approach capacity (diameter, entry width, etc.)
- Interactive design / operations analysis

S RODEL												×
12:8:03		and the second second second	HB SR-	99/EAS	T FIRS	T RUI		n an			. 1	
E (m)	5.0		10.00	10.00				IME PE	RION	min	90	
L' (m)	10.0		10.00	10.00				IME SL	ICE	mit	15	
PAR (M)	3.0 30.0		7.00 30.00	7.00				E3UL 13 FME / PA	ST.	CUU MIT	060 15.00	
PUT (A)	40.0		40.00	40.00					n Tan	27 111	0 60	
BIR (m)	45.0		45.00	45.00			F		PF .	icu/uel	VEN	
GRAN SEP		0 0	Ő	Ű			Fi	OW PE	AK ar	a/op/pe	PM	
LEG NAME	PÉR	FLIDUS 61et	evit 3	nd ato		FERE	ei	FER	U RA	ETO .	FUND TH	
NB 99 0N	1.02	0 0	0	0		1.11	50	1.11	1.11	1.11	0 30 60	
WB E 1ST	1.02	185 745	0 2	20		1.11	50	1.11	1.11	1.11	0 30 60	
NB 99 OFF	1.02	05	950	0		1.11		1.11	1.11		0 30 60	
EB E 1ST	1.02	0 625	215	0		1.11	58	1.11	1.11	1.11	0 30 60	
	ورمير			100E 2	a para series de la compara				3.8			
FLOW	heh	0	1055	1060	932							
CREACTER	y e h	156	2300	1821	1638					WULL 1	3.7	- CO
HAV BELAY	MINS	0.00 0.00	0.04 0.05	0.07 0.08	0.07 0.08					เยล และ	A 3.1	
ONE ONENE	n a h	0.00	0.03	0.00	0.00						46.4	
HOX OVERE	uch	Ö	1346		1							
Imode F2	direct		HT IST	eu F4	fact F	ostat	ts	Fåeco	0 E	prat	Fillrun E	5

i

l

I I

| |

| |

Π

П

SIDRA

- Akcelik & Associates, Australia
- Intersection analysis similar to HCM
- Uses gap acceptance and lane utilization to determine capacity
- Can change headway values to calibrate to local conditions

SIDRA

aaSIDRA 2.0 File Edit Project Tools Window Help D 🚅 B 🐚 🎒 🖇 🎭 🔧 8 💈 💆 🛉 🕂 🛤 🗔 🖉 😨 🢡 □ 🖌 🚔 AltE127PM2 aaSIDRA Output - E:\My Documents\Research\Roundabout IC\SIDRA\AltE127PM - 0 × Geometry -🖻 🖹 Input Akcelik & Associates Ptv Ltd - aaSIDRA 2.0.3.217 FRIDES 📥 Data Listing - O × b 🖹 Output Intersection Sumr **Movement Summary** B Movement Summ akcelik & associates 🗄 🔠 Output Tables Geometry - E:\My Documents\Research\Roundabout IC\SIDRA\AltE127PM2 _ 🗆 × E Fire File E Fi Roundab Alte Inte Vehicl aaTr Mov No RUN ___ * Ba WB E Fit 22 21 Approa SB Off-r 42

SimTraffic

- Trafficware, USA
- Stochastic simulation model
- Uses Synchro for data input
- Driver behavior and vehicle characteristics
- Can change headway factors to calibrate to local conditions

SimTraffic

Paramics

- Quadstone, UK
- Stochastic simulation model
- Driver behavior and vehicle characteristics
- Link/node network structure
- Automatically creates roundabout

Paramics

VISSIM

- PTV, Germany
- Stochastic simulation model
- 3D animation features
- Link/connector network structure
- Specify gap acceptance parameters by lane for each approach

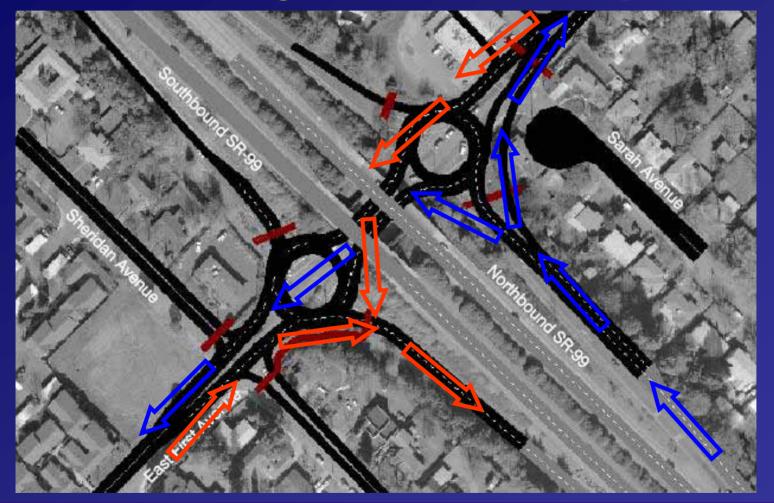
VISSIM

Review of Methods

• FHWA & RODEL

- Based on British regression equations
- Gap acceptance & lane configuration are not factors
- SIDRA & SimTraffic
 - Allow calibration of gap acceptance parameters to local conditions
- Paramics & VISSIM

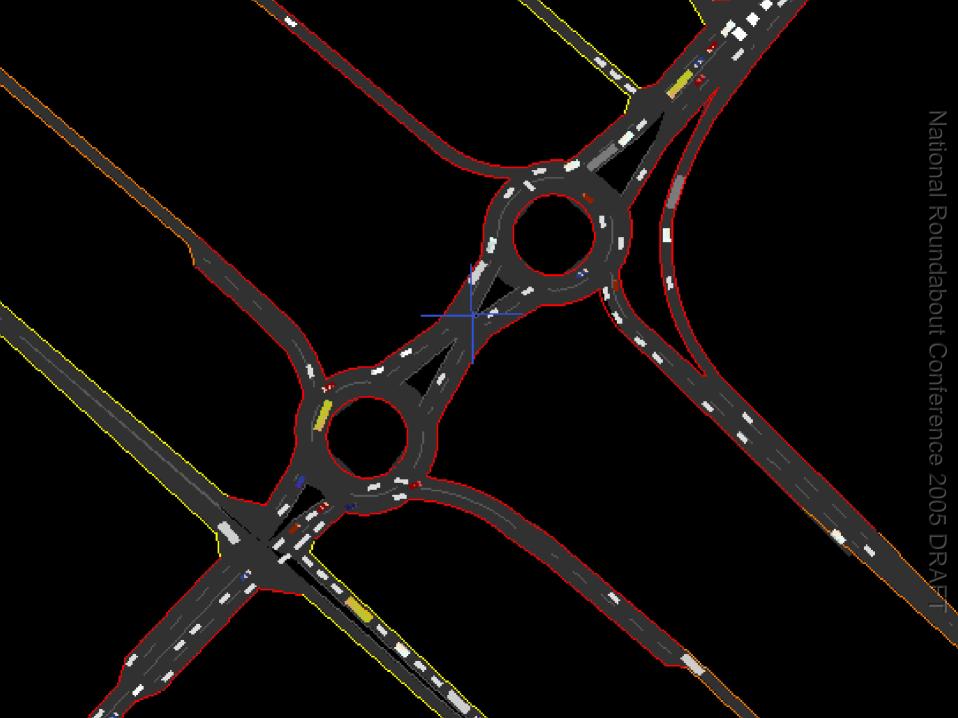
 Most flexible in modeling behavior



Case Study #1 - Description

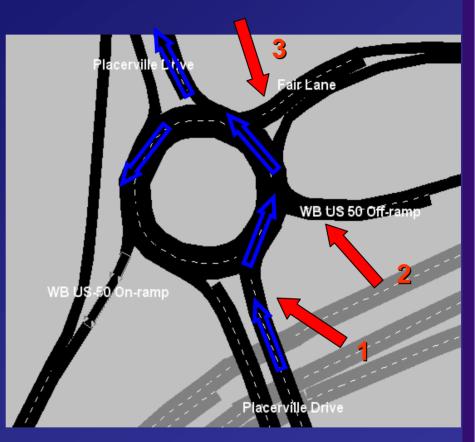
- SR-99/East First Avenue in Chico, CA
- Design Year (2027) PM Peak Hour
- Other alternatives with signals analyzed with CORSIM
- Diamond interchange with roundabout ramp terminal intersections

Case Study #1 - Description


Case Study #1 - Results

	Min Minister
FHWA	F / 59
RODEL	D / 28
SIDRA	F / 158
SimTraffi	c F / 249
Paramics	F / 86
VISSIM	E / 48

A MARKET	
FHWA	A / 5
RODEL	A/4
SIDRA	D / 28
SimTraffic	F / 353
Paramics	C / 24
VISSIM	B/11
	RODEL SIDRA SimTraffic Paramics



Case Study #2 - Description

- US-50/Placerville Dr. in Placerville, CA
- Design Year (2030) PM Peak Hour
- 5-leg roundabout at westbound ramp terminal intersection

Case Study #2 - Results

- RODEL & SIDRA
 report good LOS
- Difficult to model the geometry accurately

Method	LOS / Delay
RODEL	B / 11
SIDRA	B / 15
VISSIM	F / 99

- VISSIM can model one-lane exits, lane restrictions, & gap acceptance factors
- Shows insufficient gaps for 3rd approach

Recommendations

- FHWA, RODEL, & SIDRA - For uncongested conditions For isolated locations • SimTraffic For congested conditions - For system-wide analysis - For restricted geometry (one-lane exits
 - or forced right two-lane exits)

Recommendations

- Paramics & VISSIM
 - For congestion conditions
 - For system-wide analysis
 - For complex geometry, such as:
 - Weaving within the roundabout
 - Signalized intersections
 - Right-of-way constraints
 - Freeway ramps
 - Driveways

Questions?

High Capacity Roundabout Intersection Analysis: Going Around in Circles

