Safety Impacts of Access Management Techniques in Utah

Grant G. Schultz, Ph.D., P.E., PTOE Brigham Young University Jeff S. Lewis, E.I.T. Parsons Brinckerhoff Tim Boschert Utah Department of Transportation

> Transportation Research Board Seventh National Conference on Access Management Park City, Utah August 2006

Outline

- Introduction
- Background
- Crash database
- Corridor selection
- Analysis procedure
- Analysis results
- Conclusions
- Future Research

Introduction

3

- Traffic volumes and congestion in Utah have increased in recent years
- One of the primary areas of congestion are arterial streets, which according to the AASHTO Green Book should provide "…a high operating speed and level of service"
- Utah has placed an increased emphasis on access management techniques to help manage this congestion

50

Introduction

- The Utah Department of Transportation (UDOT) recently established state law to help control access management:
 - Administrative Rule R930-6:
 Accommodation of Utilities and the Control and Protection of State Highway Rights of Way

Introduction

- One of the topics addressed in the Administrative Rule is raised medians
- UDOT was interested to determine if raised medians are an effective safety tool
- The purpose of this paper is to present the results of an assessment on the safety impacts of access management techniques (primarily raised medians) in Utah

Background

- Access management techniques have generally been shown to have a positive impact on safety
- Access point density has been shown to be positively correlated with crash rates

Background

Corner clearance is related to crash rates The type of 12 median has 10 a direct impact 8 on the safety of 6 the corridor 4

Background

- Previous studies on access management and raised median safety have been performed outside of Utah
- There was a need to determine the safety benefits provided by access management techniques within the state and to develop a methodology wherein this data could continually be monitored

Crash Database

To complete this evaluation, a GIS enabled web delivered data almanac (i.e., crash database) was used to evaluate crash data

Search	Intersection	Filters	Reports	Open Map	Accidents	~
mple Search	Advanced Sear	rch Fixed Segm	ent Analysis 👔 Fl	oating Segment And	alysis Cluster Analysis	I Help Home
			Accident Sim	ple Search		
	Year 19 Route 01	96 💌 - 1998 💌 86 💽	I	Step 1 - Ente Step 2 - Sele	r a Year. ct a Route. r the From To Milenoint	
	Milepoint 5.5 Filter Se	i4 _ 7.59 lect a Filter (Optiona	al) 🗸	Step 4 - (Opt	ional) Select a Filter.	
		Search]			

Crash Database

- The system was designed to enhance the analysis of the data through the:
 - Generation of custom tables and reports
 - Placement of the data on a "smart map" to visually identify hot spots or deficient areas
 - □ Ability to extract information through queries and save the data into a single file for analysis
 - □ Ability to shorten data collection time

Corridor Selection

To analyze the results of access management techniques a sample of corridors was selected
 The corridors included locations where access management techniques (i.e., raised medians and/or driveway consolidation) had been implemented

Corridor Selection

The analysis corridors included: □ University Parkway (SR 265) □ Alpine Highway (SR 74) □ State Street (SR 89) □ 400/500 South (SR 186) □ 300 West (SR 89) □ Redwood Road (SR 68)

Corridor Selection

- Several corridors were also selected as control sites including:
 - □ 700 East (SR 71)

□ SR 36

- □ 12300 South (SR 71)
- Redwood Road (SR 68)St. George Blvd. (SR 34)

Analysis Procedure

A set procedure was established to analyze the data that began with a thorough inspection of the site and proceeded through full
Interview of the sector of the set of the sector of the sec

analysis using the crash database

riteria: SELECT all route_intsections VHERE accident data is (Year BETWEEN 1996 AND 1998) AND radius = 500 AND Total Accidents >= 0 AND (Route = 0089) AND (Milepoint BETWEEN 319 AND 326)																					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																					
Primary		Secondary		T	e	Ti All	otal Legs	Fi J	atal All egs	Pr L	rimary (F eg 1	/ R(') L(oute eg 2	L	Secor Route eg 3	nda e (! L(iry S) eg 4				
0089	319.38	0266	3 53	Signal	417.2	# 138	S 88	<u>n</u>	ale	# 26	4.93	# 50	9.47	31	4.80	31	4.80	Info	A cc	yze Wah	Tot
0089	321.14	0171	10.75	Signal	572.3	172	7.75	0		20 60	11.89	24	4.76	63	10.41	25	4.13	Info	Acc	Veh	Tot
0089	325.04	0269	0.90	Signal	601.6	35	1.54	0		21	4.06	6	1.16	7	1.13	1	0.16	Info	Acc	Veh	Tot
0089	325.19	0269	0.90	Signal	1082.8	53	2.37	0		27	5.44	18	3.63	7	1.13	1	0.16	Info	Acc	Veh	Tot
0089	325.33	0186	5.70	Signal / Trax Xing	2267.7	106	5.87	0		19	3.83	51	10.28	30	7.36	6	1.47	Info	Acc	Veh	Tot

Analysis Procedure

Several analyses were performed including:

Sear State Ro

- Segment analysis
 Intersection analysis
 Collision type analysis
- □ Crash severity analysis

	мар	Open r	Reports	ction Filters	Intersec	
				Points of Interest	sections	ter
	Intersection Search	tate Road	s			
	1996 🗙 . 1998 🗙	Year				
	Davida	oute 💿	Ro			
	0186 ¥	ihed 🔍	s			
	From - To Milepoint	trict 🔍	Dis			
	5.54 _ 7.59	gion 🔵	Rej			
		unty 🔍	Co			
	×	nfluence	play As Radius of I			
	50	nfluence	Radius of I			
	0	iter Than	tal Accidents Grea			
×	<optional></optional>	Optional)	Select Filter (

Analysis Results

Results are summarized for Redwood Road (SR 68):

□ Raised median installed in 1994

Data analyzed
 from 1992 to
 1993 and again
 from 1995 to 1997

- Crash data and access point density for Redwood Road:
 - □ Crash rate decreased 13%
 - □ Number of access points per mile decreased 26%
 - □ AADT increased 12%

	Before (1992–1993)	After (1995–1997)
Crashes Per Year	112.5	110.3
Crash Rate (Crashes/MVMT ¹)	8.36	7.25
Fatality Rate (Fatalities/100 MVMT ¹)	0.00	0.00
Access Points	27	20
Length of Section (mi.)	0.73	0.73
Access Points per Mile	37.0	27.4
AADT ²	50,490	57,082

¹MVMT = Million Vehicle Miles Traveled

²AADT is a weighted average for the segment

Crash rates for one-tenth-mile intervals:

Intersection crash rates:

Collision types as a percentage of total crashes:

Severity of crashes as a percentage of total crashes:

Cost of crashes:

□ As a result of the reduction in severity, the overall cost of crashes per year decreased by approximately \$565,000 per year

	Unit	Before	After
Crash Severity	Cost	(1992–1993)	(1995–1997)
No injury	\$ 4,500	\$ 661,500	\$1,062,000
Possible injury	\$ 25,000	\$1,300,000	\$1,650,000
Bruises/Abrasions	\$ 48,000	\$ 816,000	\$1,008,000
Broken Bones or Bleeding Wounds	\$ 228,000	\$2,052,000	\$1,824,000
Fatalities	\$2,720,000	\$ 0	\$ 0
Total Cost of Crashes	\$4,829,500	\$5,544,000	
Cost of Crashes Per Yea	\$2,414,750	\$1,848,000	

Changes in collision types at Analysis Locations:

		Types of Collisions								
		Rear-	Right-			Single				
		End	Angle	Sideswipe	Head-on	Vehicle	Other			
	University Parkway	•	0	0	-	•	•			
Analysis Locations	Alpine Highway	0	•	•	-	•	0			
	State Street	•	0	0	-	0	0			
	400/500 South	•	0	●	-	•	0			
	300 West	0	0	-	-	0	•			
	Redwood Road	•	0	٠	-	•	0			

"•" indicates an increase

"o" indicates a decrease

"-" indicates no change

Changes in crash severity at analysis locations:

		Crash Severity								
		No Injury	Possible Injury	Bruises/ Abrasions	Broken Bones or Bleeding	Fatalities				
	University Parkway	•	•	•	0	0				
JS S	Alpine Highway	0	•	•	•	-				
lysitio	State Street	•	•	•	0	0				
na oca	400/500 South	•	0	0	0	•				
P I	300 West	0	•	•	0	_				
	Redwood Road	•	0	0	0	_				

"•" indicates an increase

"o" indicates a decrease

"-" indicates no change

24

• Overall changes in traffic characteristics:

		Crash Rate	Fatality Rate	Access Points per Mile	AADT	Total Cost of Crashes per Year
	University Parkway	•	0	0	•	0
is ns	Alpine Highway	0	-	-	0	•
lysi tio	State Street	•	0	•	•	0
Ana oca	400/500 South	•	•	0	0	0
AL	300 West	•	-	-	0	0
	Redwood Road	0	-	0	•	0
es	700 East	0	•	-	0	•
ontrol Sit	12300 South	•	•	-	•	•
	Redwood Road	0	0	-	•	0
	St. George Blvd.	•	•	_	0	•
C	SR 36	0	-	_	•	•

"•" indicates an increase

"o" indicates a decrease

"-" indicates no change

Relationship between access density and crash

Conclusions

- Research was performed to evaluate safety of access management techniques in Utah
- Results showed that access management techniques may not necessarily be effective in reducing overall crashes
- However, other safety improvements were consistently observed, primarily the reduction in crash severity along with the corresponding reduction in the costs associated with crashes

Future Research

- More corridors are needed to develop a stronger correlation between sites
- A possible correlation was noted between crash rates and the characteristics of the corridors (e.g., land use, # lanes, AADT, etc.), which are being evaluated in a current research project to develop an access management performance index for the state

Acknowledgements

- Sponsor Utah Department of Transportation
- Facilities Brigham Young University
- Data Almanac Doug Anderson

