Iowa Corridor Management Pilot Project Overview

Recommendations For A Corridor
Management Program
August 2004

Presentation Overview

- Project goals
- Pilot project selection process
- Analysis results
 - Segment types 1, 2, and 3
 - Driveway and traffic signal inventory/density analysis
 - Safety
 - Land use
- Key findings
 - Segment types and their typical issues
- Recommended program (summary)
 - Retrofit studies on existing corridors with issues (mainly Segment 1 situations)
 - Corridor management agreements on corridors where future corridor management issues are likely to arise (Segment 2 situations)
 - Cooperative planning with local jurisdictions (Segment 3 situations)

Project Goals

- Identify typical lowa corridor management issues and problems
- Develop safety and land use analysis techniques to be used on other corridors
- Develop a framework for corridor management in Iowa
- Involve several lowa DOT offices plus Districts and metropolitan/regional planning organizations

Corridor Planning Pilot Project Selection Process

- Two pilot projects were selected by Iowa DOT management
- Both of the pilot corridors selected for detailed analysis ranked in the top ten in a previous study that identified the top priority candidates for corridor management in lowa based on:
 - Crash statistics
 - Importance for commuting
 - Likelihood of future access management issues

Key Commuting Routes In Iowa: 2004 Estimated Work Trips

Three Corridor Segment Types

Urban Segments

- "Segment 1"
 - Urbanized
 - Largely built out
 - Predominately commercial land use
 - Relatively well-managed in terms of commercial driveway density and medians
 - Relatively high traffic signal density
 - Low incidence of left-turning crashes; higher rates of right turn and (especially) rear-end collisions at traffic signals
 - Some opportunity for retrofit access management improvements

US 20 Urban Segment (1)

Fringe Segments

- "Segment 2"
 - Urbanizing (suburban and urban fringe)
 - Largely undeveloped
 - Considerable land development potential
 - Likely use: mixture of commercial, industrial, and large lot residential
 - Relatively well-managed in terms of commercial driveway density and medians at present
 - A few traffic signals at major intersections or ramps
 - Low incidence of left-turning crashes; higher rates of right turn and rear-end collisions
 - Considerable potential for future access management problems

US 20 Fringe Segment (2)

Rural Commuter Route Segments

- "Segment 3"
 - Rural, but within 30 minute commuter range
 - Largely undeveloped
 - Predominately agricultural land use
 - Relatively well-managed in terms of commercial driveway density and medians
 - No traffic signals
 - Low incidence of left-turning crashes; low rates of right turn and rear-end collisions
 - Opportunities for "spot" access management problems at a few locations

US 20 Rural Segment (3)

Example Analysis Results: US 20 Corridor Near Dubuque

- Driveway locations and density
- Traffic signal location and density
- Safety: crashes frequency, type, and rate
- Land use: present and planned future

Driveway Density Analysis: US 20

	Segment Length	Driveway Count	Driveways/ Mile
Segment 1	2.0 miles	9	4.5 (low)
Segment 2	0.8	30	3.8 (low)
Segment 3	15.8	5	0.3 (very low)

Segment 2 has several instances of moderate density.

Traffic Signals And Driveways: Segment 1 And Portion Of Segment 2 US 20 In Dubuque

High driveway density

Segment 2 Driveways

Areas of concern

Segment 3 Driveways

Very well managed segment

Safety Analysis

- Crash frequency
 - Focus on access-related crashes
 - Left-turn, right-turn, and rear-end collisions
- Access-related crash rates
- Access-related crash severity

Current Safety Analysis US 20: Access-Related Crashes

	Segment 1	Segment 2	Segment 3	Corridor
Rear End	67 (35%)	27 (25%)	0 (0%)	94 (26%)
Right Turn	18 (9%)	8 (7%)	1 (2%)	27 (7%)
Left Turn	1 (1%)	3 (3%)	3 (5%)	7 (2%)
All Access- Related	86 (44%)	38 (35%)	4 (6%)	128 (35%)
Total Crashes	194 (100%)	108 (100%)	64 (100%)	366 (100%)

Note: Columns do not total to bottom number. Difference is non-access crashes.

Access-Related Crash Rates US 20

	Segment 1	Segment 2	Segment 3
Access-	4.2	1.5	Near Zero
Related	(Moderate)	(Low)	

Probable access-related crash rates per million vehicle-miles traveled. Includes right-turn, left-turn, and rear-end collisions.

Crash Hot Spots: Segment 1 Rear-End Collisions Predominate

Safety Analysis For US 20: Conclusions

Overall

- Roughly 35% of all crashes in the corridor are accessrelated, but these are concentrated in the urban and suburban portions (Segments 1 and 2)
- Access-related crashes tend to be severe
- Driveway densities are generally not high on the route, but there are several concentrations of commercial driveways that could be consolidated

Segment 1

- Has significant numbers of rearend collisions and right turn crashes
- This is consistent with a multilane divided corridor with a high public road intersection density and high traffic signal density

Segment 2

- Has a less significant accessrelated safety problem than Segment 1
- There are three problem subsegments
- Some safety problems are associated with public road intersections rather than with driveways

Segment 3

 Safety problems are generally not access-related (crashes are run off the road, weather-related, animal crashes, etc.)

Land Use Analysis

- Analysis process employed current and projected future land development in GIS format
- Segment 1
 - Largely commercial
 - Essentially built-out; little potential for further development except if re-developed
- Segment 2
 - Mixture of commercial, industrial, and agriculture
 - Considerable potential for new commercial and industrial development with associated demand for driveways
- Segment 3
 - Largely agricultural except in and around cities
 - Limited development at the edges of small cities

Segment 1: Largely Commercial And Mainly Built-Out

Segment 2: Mixed Land Use With Much Room For More Development

Classic "strip" development

Segment 3: Mainly Agricultural With Mixed Use Near Cities

Future Land Use Analysis: US 20

- Segment 1 will continue to exist as a commercial strip with some changes in individual parcels and businesses
- Segment 2 will likely continue to develop as a commercial/industrial strip (eastern half) and large lot residential (western half)
 - This segment has (by far) the most potential for future land development
- Segment 3 will likely remain largely agricultural except in and near Peosta, Epworth, Farley, and Dyersville (small cities along the corridor)

Segment 2: Planned Industrial Development (Yellow)

Segment 2: Planned Development At The Dubuque Fringe (Yellow and Red)

Large Portions Of Segment 2 Are Planned As Low Density Residential

Commercial uses (red) are clustered—positive feature

Segment 3: Limited New Development Planned

Corridor Management Issues By Segment Type

Segment 1

- High density of public road intersections and median breaks
- High density of traffic signals
 - Close spacing leads to a decline in mean travel speed, reduction in LOS, and an increase in rear end collision rates
- Lack of dedicated turning lanes at major intersections
- Discontinuous frontage road system
 - Frontage road system too close to the mainline
- A handful of direct driveway accesses could be closed or consolidated

Corridor Management Issues By Segment Type

Segment 2

- Several areas with direct driveway accesses that could be closed or consolidated
- Areas of high crash rates that are usually related to land development and access decisions
- Discontinuous frontage road system
- Large potential for future access management issues as land develops
 - Especially important in areas slated for commercial and industrial development

Corridor Management Issues By Segment Type

Segment 3

- "Spot" safety issues associated with individual developments
- Examples:
 - Existing and potential commercial development near Farley and Epworth located around at-grade intersections
 - Large, new BMX (cycling) facility located in a rural area

Overall Corridor Management Goals

- Reduce at-grade public road intersection density (full intersections), full median break density, and traffic signal density along Segment 1
- Reduce direct driveway accesses where possible through driveway sharing and alternative access way development along Segment 2
- Develop a complete frontage and backage road system where appropriate with a substantial separation from the mainline
- Improve land use planning along Segments 2 and 3 so that new commercial developments are clustered around existing and planned interchanges
- Clear commercial driveways a reasonable distance away from interchanges and major intersections

"Ideal" Corridor Configuration

Segment 1

- Urban expressway with high level of access control (or a freeway)
- 45-55 mph mean travel speed
- Traffic signals spaced at least ½ mile apart
- No direct driveway accesses
- Full frontage road system with accesses to mainline at interchanges at least ½ miles apart (ideally 1 mile apart)

Segments 2 and 3

- Suburban/rural expressway with high level of access control
- 55-65 mph mean travel speed
- Full median break spacing>1 mile (no traffic signals)
- Driveway spacing >0.25 miles (right-in right out only, where possible)
- Backage road system with accesses to mainline separated at least 1 mile

Suggested Iowa Corridor Management Program Framework

- Segment 1
 - Develop retrofit access management plans
- Segment 2
 - Develop corridor management 28E agreements
 - New Iowa US 6 agreement as a model (District 4, Iowa DOT)
 - NCHRP Synthesis as a tool
- Segment 3
 - Cooperative planning with local land use planning jurisdictions
 - Spot corridor safety improvements
- Overall
 - Improved inventories of driveway permit locations, access priority classification levels, and access rights obtained
 - Automated access permitting system?

Suggested Items To Be Addressed In A Retrofit Access Management Study

Segment 1 Situations

- Inventory: driveways, medians,
- Safety analysis: crash rates, locations, and types
- Present and future land use
- Traffic signal location and spacing
- Improved traffic control systems
- Dedicated turning lanes
- Frontage or backage road system and internal circulation in adjacent developments
- Consolidation and clearance of commercial driveways

Suggested Items Recommended To Be Included In A Corridor Management Intergovernmental Agreement

- Segment 2 Situations
 - Public road interchanges and intersections
 - Traffic signal locations
 - Medians and median break locations
 - Driveway locations and directions (e.g. right-in, right-out)
 - Dedicated turning lane locations
 - Alternative access ways (e.g. development of frontage and backage road systems)
 - Generalized land use planning

Items That Could Be Pursued In Rural Parts Of Corridors

- Segment 3 Situations
 - Some communities along key commuting corridors have no comprehensive land use plans or badly outdated plans
 - Encourage them to develop and update plans
 - Cooperatively review new development proposals for potential access and safety issues, especially those that involve commercial and industrial development
 - Conduct "spot" safety and access analyses at current and potential problem locations

Expected Benefits Of A Corridor Management Program

- Preservation of the Iowa DOT's multi-million dollar investments in major corridors
- Maintain mean travel speed and LOS, especially on Segment 1s
- Lower rear-end collision rates (mainly on Segment 1s)
- Lower right and left turning crash rates (mainly on Segment 2s)
- Preservation of Segment 3s, which are generally wellmanaged and safe now
- Maintenance of business environment on Segment 1s, which might otherwise begin to suffer due to higher travel times and greater congestion

Current Program Status

- Several Iowa DOT offices (Development, Location, Safety, Planning) are involved
- Each Iowa DOT District (1 through 6) is identifying a corridor for which an Intergovernmental Corridor Management Agreement will be developed between Iowa DOT and local governments
- Retrofit access management studies are being programmed as needed
- MPOs and Regional Planning Affiliations being included as partners

For More Information Contact:

- David Plazak
 - Associate Director for Policy
 - Center for Transportation Research and Education
 - Iowa State University Research Park
 - Phone: 515-296-0814
 - dplazak@iastate.edu