aaSIDRA for Roundabouts INTRODUCTION

Rahmi Akçelik

Director, Akcelik & Associates Pty Ltd Adjunct Professor, Monash University

Mark Besley

Director, Akcelik & Associates

TRB Roundabout Conference Vail, Colorado, USA, May 2005

DEMO Objectives

- You are interested in Roundabouts − How can aaSIDRA HELP you?
- This brief Introduction first
- aaSIDRA 2.1 HCM version with US Units
- QUICK examples to demonstrate:
 - Input & Output
 - Various intersection types
 - Different GEOMETRIES
 - CALIBRATION
 - Sensitivity Analysis
 - Case Studies

aaSIDRA Users

aaSIDRA most popular roundabout analysis software in the USA

US Highway Capacity Manual (HCM) version of aaSIDRA

- ✓ USA largest user group (over 700 sites)
- ✓ The HCM version of aaSIDRA offers options for US Customary and Metric units
- √ aaSIDRA is HCM compatible

See: www.aatraffic.com/SIDRA/aaSIDRA_HCMversion.htm

What makes aaSIDRA different? Total intersection analysis tool

Model CONSISTENCY in evaluating alternative intersection treatments

of analysis .

aaSIDRA is based on extensive research and development effort

Documentation

- ✓ aaSIDRA User Guide
- Research Reports
- Articles
- ✓ Our website

What makes aaSIDRA different?

Level of analysis detail

more detailed model of traffic stream

Individual vehicles			Microsimulation models	
Drive cycles			aaSIDRA	
Traffic flows	Most traffic analysis models e.g TRANSYT, HCS		Micro-analytical	
Speed-flow functions	Most transport planning and economic analysis models		mod	lel
	Approaches	Lane groups	Individual LANES	

more detailed model of road geometry

What makes aaSIDRA different?

Lane-by-lane analysis

aaSIDRA is the ONLY major analytical software with lane-by-lane analysis

Short lane analysis

- Lane flows
- Unequal lane use
- De facto exclusive lanes

What makes aaSIDRA different?

Four-mode elemental model (drive cycles)

For modeling

- Geometric delay
- Operating COST
- Fuel consumption
- Emissions

What makes aaSIDRA different? Total intersection analysis tool

Model CONSISTENCY in evaluating alternative intersection treatments

Roundabout Model

- Geometry
- Driver-Vehicle Characteristics

BOTH are included in aaSIDRA (not just Geometry)

What makes aaSIDRA different? Roundabout design

Important for roundabouts with low demand: aaSIDRA models negotiation radius, speed and distance allowing for path smoothing by drivers

What makes aaSIDRA different? Roundabout design

Important for roundabouts with high demand: aaSIDRA identifies congestion caused by heavy circulating flows especially with unbalanced flow patterns

What makes aaSIDRA different? Roundabout model

aaSIDRA uses an *empirical gap-acceptance method* to model roundabout capacity and performance.

The model allows for the effects of both roundabout geometry and driver behaviour.

It incorporates effects of:

priority reversal (low critical gaps at high circulating flows),
priority emphasis (unbalanced O-D patterns), and
unequal lane use (both approach and circulating lanes).

CAPACITY can be measured as a service rate for each traffic lane in undersaturated conditions according to the HCM definition of capacity to represent prevailing conditions.

What makes aaSIDRA different? Roundabout model

aaSIDRA gap-acceptance parameters are *NOT fixed*, but vary with roundabout geometry and flow rates.

Effect of Exiting Flow can be included

Model Calibration for local conditions

Model Calibration for local conditions

HCM single-lane roundabout example, WB approach:

inscribed diameter = 36 m (118 ft), entry lane width = 4.0 m (13 ft), approach half width = 3.5 m (11.5 ft), turn radius = 26 m (84 ft), flare length = 20 m (66 ft), entry angle = 30°

aaSIDRA model with default parameters: Environment Factor = 1.0, Medium entry flow adjustment, Medium O-D pattern effect

2000 aaSIDRA Dominant lane 1800 aaSIDRA Subdominant lane 1600 UK linear regression (per lane) 1400 — → HCM 2000 Upper Entry lane capacity (veh/h) HCM 2000 Lower 1200 1000 800 600 400 200 200 1200 1400 1600 1800 2000 400 600 1000

Circulating flow rate (pcu/h)

aaSIDRA model calibrated to match the HCM lower capacity model:

Environment Factor = 1.15, Low entry flow adjustment, Medium O-D pattern effect

Information on roundabouts

Visit our web page for extensive information on roundabouts

www.aatraffic.com/SIDRA/roundabouts.htm

aaSIDRA for Roundabouts CONCLUSION

- Paper presentations during the conference:
 - Session 4A, Monday Metering Signals
 - Session 7B, Tuesday Model Calibration
- DENVER Workshop: 26-27 May
- Exhibition:
 - Leaflet
- DISCUSS any issues with us

Animated Flags—By 3DFlags.com

