
TRB National Roundabout Conference Vail, Colorado May, 2005

Tom Hicks, P.E. Maryland State Highway Administration

<u>Maryland</u> Operating/Planned Roundabouts

50 Roundabouts in Operation at State Highway intersections (18 are multi-lane)

30 Roundabouts in planning, design or construction

Close to 50 at local government intersections

... Ken Todd!

Favorable Geometric Design Elements

Merging
Diverging
Low relative speed
Reduced conflict points
Positive guidance

Maryland SHA Goals

Safety is # 1
Mobility is close behind
Both are Key Performance Areas in our SHA Business Plan
Operational efforts include: CFI, SPUDI, ITS, Traffic Responsive Signal Systems

Traffic Growth in Maryland

Population 5 million today 7 million population by 2030 VMT 60 % increase by 2030 Very few additional lane miles Car-pools, Transit, Flex-time, Telecommuting will not do the trick Traffic Management – e.g., Roundabouts

<u>Maryland SHA's Traffic Control</u> <u>Philosophy</u>

- Adhere to standards and guidelines
- Uniformity and consistency design and traffic control
- The least control is the best control
- Perception vs. reality
- Malfetti's Graph
- Apply human factors esp. Positive Guidance
- Henry Barnes

Meanwhile – back to the Ritchie-Marlboro-I 95/495 Story

Lisbon – the first
Leeds – high speed
Ritchie/Marlboro/Capital Beltway Interchange
Towson – urban, high traffic, multi-lane, pedestrians, visually impaired, gateway, economic value

MD Roundabouts - High-Speed Rural Environment The "Lisbon' Roundabout

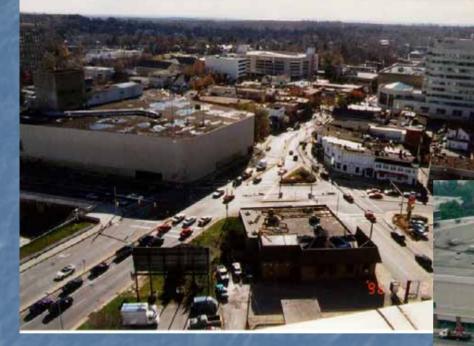
MD 94 @ MD 144 – Howard County ICD = 100' AM = 630 PM = 696 * Posted speed limit on MD 94 is 45 mph

<u>Public Involvement: Overall</u> <u>Experience</u>

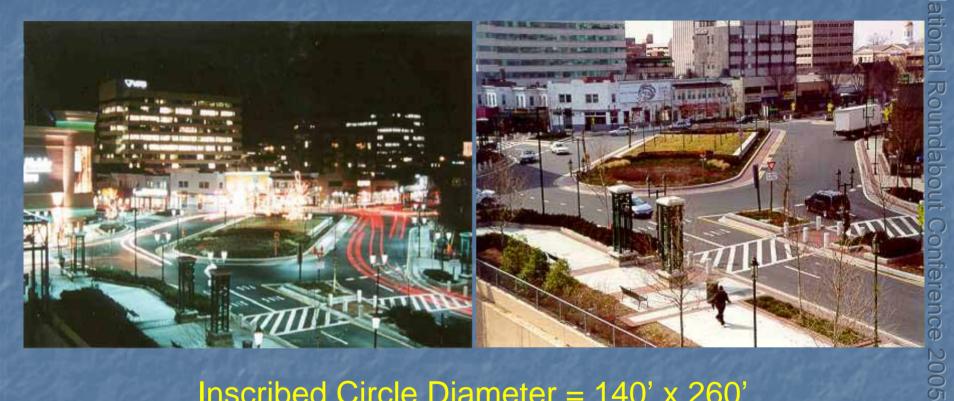
Typical experience: negative reaction before construction, positive reaction after construction

Common misconception based on rotaries or neighborhood traffic circles

MD Roundabouts - High-Speed Rural Environment


The "Leeds" or "Lanzi" Roundabout

MD 213 @ Leeds Rd./Elk Mills Rd. – Cecil County ICD = 110' AM = 602 PM = 847 * Posted speed limit on MD 213 is 45 mph


MD Roundabouts - Urban Environment The "Towson" Roundabout MD 45 @ MD 146/Joppa Road Baltimore County

BEFORE

The "Towson" Roundabout

Inscribed Circle Diameter = 140' x 260' Peak Hour Approach Volume : AM = 2,771 PM = 3,952 Date of Completion - October, 1998

DRAFT

Roundabouts vs. Traffic Signals

Safety
Congestion
Air quality/Noise
Operations
Geometrics
Long-term costs

The "Annapolis Gateway" Roundabout MD 450 @ Taylor Avenue/Spa Road Anne Arundel County

MD Roundabouts - Suburban Environment "Gateway"

The "Brunswick" Roundabout

MD 17 @ 'B' St./Maryland Ave. – Frederick County ICD = 150' x 110' AADT = 3,850 DHV= 10% (Approx.)

Roundabout Safety

 Roundabout have a proven safety record for reducing motor vehicle crashes, particularly injury crashes
 Experience is due to basic contributing factors:

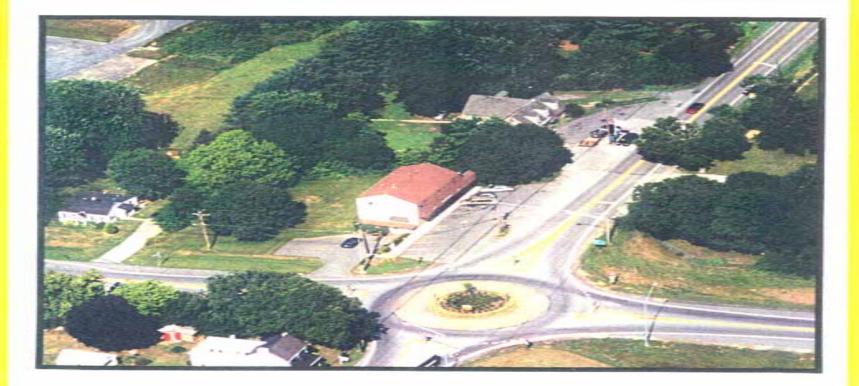
> Reduced vehicle speeds Reduced driver decisions Reduced conflict points Reduced conflict severity

Crash Reduction at Roundabouts (State Maintained) 70% reduction in total crashes 86% reduction in injury crashes 100% reduction in fatal crashes B/C \$15 per \$1 spent through crash reduction

<u>Mini-Failure</u> – MD 100 @ Snowden River Parkway – Howard County

MD 100 @ Snowden River Pkwy. – Howard County ICD = 100' AADT = 14,100 (2020 Projection)

<u>Maryland SHA Roundabout Task</u> <u>Force - 1989</u>


- Planning

- Traffic

- Consultant

- Local Governments

ROUNDABOUT DESIGN GUIDELINES

STATE OF MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION

Roundabout Traffic Design

Chapter 1 - Signing	
Multilane Considerations	
YIELD Signs	
Pedestrian Crossing Signs	
Lane-Use Control Signs	
Chapter 2 - Pavement Markings	
Approach Markings	8
Circulatory Roadway Markings	
Scenario 1 - No Striping	9
Scenario 2 – Use of Circulatory Pavement Markings	9
Pavement Marking Options	
Pavement Marking Arrows	
Sample Circulatory Roadway Striping Configurations:	
Chapter 3 - Lighting Guidelines	
General Requirements	
Lighting in Urban and Suburban Areas	
Lighting in Rural Areas	
Equipment Type and Location	
Sample Illumination Layouts	
Chapter 4 - References	

Maryland's Roundabouts

Accident Experience and Economic Evaluation

Prepared by: Traffic Safety Analysis Division Office of Traffic & Safety

April 5, 2004

Roundabout Conclusions

Safety and Mobility are realized Congestion/Delay is reduced Geometric design is of paramount importance Long-range cost-savings are significant There is strong public acceptance....now Roundabouts have a significant role to play in a State DOT operations program Every State needs a Roundabout Champion

... the mini!