

# Creating the future of transport



www.trl.co.uk



### **Accidents at roundabouts**

**Presented by Janet Kennedy** 

**Principal Scientist, TRL** 

May 2005



# Project for UK Highways Agency on geometric design of roundabouts

- International review of design
- Review of Standard
- Consultation with practitioners
- Accident study
- Consider provision for non-motorised users
- Develop a hierarchical approach
- Revise Standard



## A typical four-arm roundabout in the UK





### A typical three-arm roundabout in the UK





### Review of design in other countries

- Emphasis on safety rather than capacity
- Roundabouts smaller than in UK
- Single or double lane designs
- Limited flaring
- Outward-sloping crossfall on circulatory carriageway

Easier to construct

**Drainage** 

More conspicuous central island

No crown line



# Typical crossfall in the UK





# Personal injury accidents in 2003

|                 | No. of accidents | % fatal and serious | Average accident cost |
|-----------------|------------------|---------------------|-----------------------|
| All roads       | 214,000          | 15%                 | £61,100               |
| Roundabouts     | 18,700           | 8%                  | £34,600               |
| Other junctions | 111,000          | 14%                 | £52,000               |
| Non-junction    | 85,000           | 15%                 | £78,800               |



# Differences between countries when comparing accidents at roundabouts

- Higher flows / multiple lanes in the UK
- Difference in definition of:

junction accident

injury accident

- Cultural differences
- Main UK study is old (1984)
- Accident rates from current UK study are for high flow roundabouts only



# Comparison of accident frequencies (injury accidents per year)

| Country               | Number of roundabouts | Accident frequency |
|-----------------------|-----------------------|--------------------|
| Australia             | 290                   | 0.6                |
| France                | 12,000                | 0.1                |
| New Zealand           | 95                    | 0.51               |
| UK (old – 4-arm only) | 84                    | 2.36 to 4.38       |
| UK (current )         | 1162                  | 1.77               |
| The Netherlands       | 46                    | 0.23               |
| US                    | 11                    | 1.5                |



# Accident frequency as a function of number of arms at the roundabout





# Accident frequency (injury accidents per year) by type of road

| No. of arms | No. of sites | Single<br>cway<br>roads | Dual<br>cway<br>roads | Severity |
|-------------|--------------|-------------------------|-----------------------|----------|
| 3           | 326          | 0.63                    | 1.28                  | 9.3%     |
| 4           | 649          | 1.08                    | 2.65                  | 7.1%     |



# Comparison of accident rates (injury accidents per 100 million vehicle-km)

| Country                           | Number of roundabouts | Rate   |
|-----------------------------------|-----------------------|--------|
| Australia                         | -                     | 4-8    |
| France                            | 179                   | 4      |
| Germany<br>(includes damage only) | -                     | 53-162 |
| UK (old)                          | 84                    | 21-37  |
| UK (current – high flow)          | 44                    | 36     |
| Sweden                            | 182                   | 2-16   |
| US                                | 11                    | 8      |
|                                   |                       |        |



### **Accident models**

Accident frequency on each arm related to flow

$$A = kQ^{\alpha}$$

or

$$A = k Q_1^{\alpha} Q_2^{\beta}$$

These models were extended to include geometric and layout variables:

$$A = k Q_1^{\alpha} Q_2^{\beta} \exp(\sum g_i G_i)$$



## Variables affecting safety

- Entry path curvature (deflection)
- Entry width and approach width
- Inscribed circle diameter
- Central island diameter
- Proportion of motorcycles
- Angle with next arm
- Approach curvature
- (Visibility)



# Percentage of injury accidents by type at 4-arm UK roundabouts

|                      | Small | 'Conventional' |
|----------------------|-------|----------------|
| Single vehicle       | 8     | 30             |
| Approaching          | 7     | 25             |
| Entering-circulating | 71    | 20             |
| Other vehicle        | 10    | 19             |
| Pedestrian           | 4     | 6              |
| Total                | 100   | 100            |



# Roundabout with single vehicle accident problem

- Approach is downhill
- Problem with vehicles over shooting
- Danger of vehicle reaching motorway below





# Roundabout with single vehicle accident problem



- Circulatory carriageway cannot be seen
- Chevrons appear to be on splitter island
- People mark possible delineation effect of reflective marker posts



# % involvement by vehicle type

| Vehicle type         | % of accidents | Severity |
|----------------------|----------------|----------|
| Pedal cycles         | 8.0            | 9.5      |
| Motorcycles          | 14.4           | 19.3     |
| Large goods vehicles | 9.3            | 8.0      |
| Cars                 | 76.7           | 7.1      |
| Pedestrians          | 2.8            | 22.6     |
|                      |                |          |



## Pedal cyclists at roundabouts

- Relative involvement rate high
- Move against new roundabouts?
- Experienced v novice cyclists
- Cycles mix with other vehicles
   Low flow, compact design
- Cycle facilities

Underpass
Cycle lane on roundabout
Cycle path with crossings



### Roundabout in Calais with outer cycle path





- Novice / cautious cyclist on outer cycle path
- Experienced cyclist
   mixes with traffic
   rides in centre of lane



## Cycle lane on circulatory carriageway





## UK roundabout in York with cycle lane





# Eye-level view of UK roundabout in York with cycle lane





### Pedestrians at roundabouts

- Small proportion of accidents (but high severity)
- Pedestrian facility

Splitter island

**Uncontrolled crossing (zebra)** 

Signal controlled crossing

Subway / overbridge

Optimum location of crossing from roundabout

Zebra crossing at 5 to 20m

Signal controlled crossing at 20m or >60m

Flaring and geometric delay



## Pedestrian crossings at roundabouts



**Brent / Harrow** 



Basingstoke



### Overturning of large goods vehicles

- Long straight high speed approach
- Inadequate entry deflection
- Low circulating flow past an entry
- Excessive visibility to the right
- Significant tightening of turn radius partway round the roundabout
- Crown lines



### Possible changes to UK Standard

- New design hierarchy
- New compact design with single lane entry
- Greater emphasis on provision for nonmotorised
- Allow outward-sloping crossfall at urban roundabouts on single-carriageway roads
- At dual-carriageway roundabouts limit visibility to right until vehicles within 15m of give way line



# Hamburger ('through-about')



Signalised roundabout with through traffic on main road across central island



### Hot cross bun ('double-through-about')



Signalised roundabout with through traffic on both roads across central island



## A look back in time!







### **End of Presentation**

**Presented by Janet Kennedy** 

Tel: +44 (0)1344 770953

Email: jkennedy@trl.co.uk

