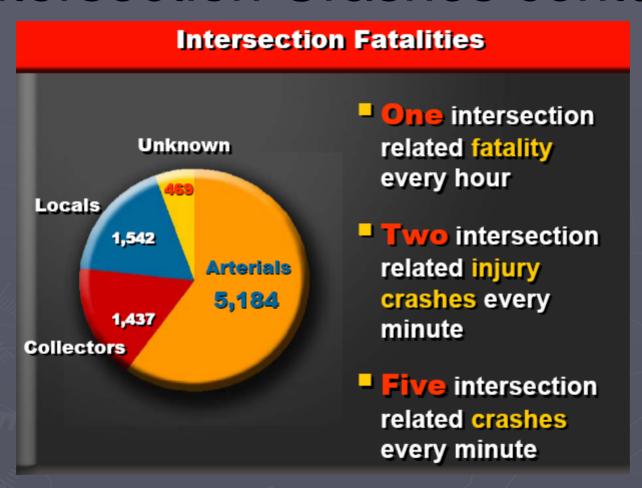
Study of Operational Performance and Environmental Impacts of Modern Roundabouts in Kansas

Srinivas Mandavilli Insurance Institute for Highway Safety

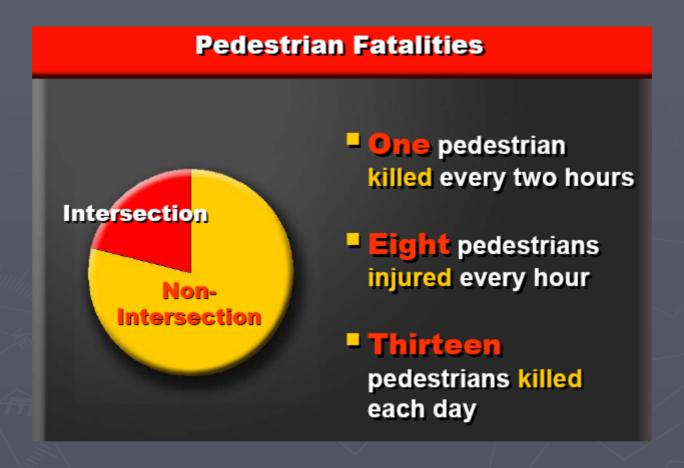
Eugene R Russell
Margaret Rys
Kansas State University

TRB National Roundabout Conference, May 22-25, 2005 Vail, Colorado

PRESENTATION CONTENT


- Quick Overview: Intersection Safety
- Background
- Kansas Roundabout Studies
- Results
- Some Public Comments
- Emissions Overview
- Conclusions
- Caveats

Intersection Crashes: Magnitude of Problem


 Each year, more than 1.8 million intersection crashes occur.

Source: FHWA Safety Website: http://safety.fhwa.dot.gov

Intersection Crashes contd...

Intersection Crashes contd...

RED LIGHT RUNNING

- In 2001 there were about 200,000 crashes, 150,000 injuries, and about 1,100 deaths were attributed to red light running.
- These figures have improved some since 2001 but not much

Our Points

- We believe we have an intersection safety problem in the USA, and
- Traffic Signals are not as safe as the general public thinks

U.S Single-Lane Roundabout Crashes-Insurance Institute for Highway Safety (IIHS) Study Results

(IIHS) study [Persaud, et.al., 2001]

- Highly significant reductions of approximately :
 - 40% for Overall Crashes
 - 76% for Injury Crashes
 - 90% for Fatal and Incapacitating Injury Crashes (predicted)

Using IIHS Figures

Roundabouts have:

- Potential to save motorists:
 - Hundreds of thousands of injury crashes
 - Thousands of deaths

Current Roundabout Performance Study

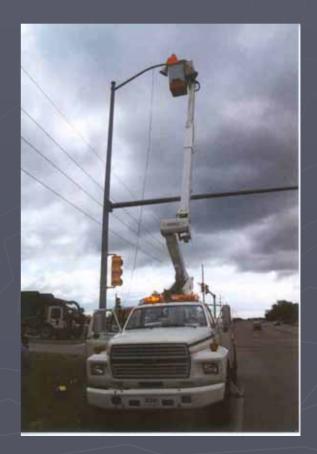
- The primary focus of this research was to study the operational performance of 11 Kansas roundabout
- The research focused on eleven sites with different traffic volume ranges where a modern roundabout has replaced or built instead of a Stop or Signal controlled intersection

Data Collection

1. Video Data Collection

- Intersection videotaped for two six hour sessions
 - AM Session: 7:00AM-1:00PM
 - PM Session: 1:00PM-7:00PM

2. Manual Data Collection


- Traffic Counts/movements were taken from the video tapes
 - Counts were collected in 15 minute intervals

Equipment Used

Mounted Camera

Mounting of Camera

Equipment Used contd...

TV/VCR Unit

Cabinet for TV/VCR

Software Used

Software Used: SIDRA (Primarily Version 1.0)
(Signalized and Un signalized Intersection Design and Research Aid)

- Input
 - Road geometry
 - Traffic counts
 - Turning movements
 - Approach Speed of the vehicles

Measures Of Effectiveness Chosen for Operational Performance

Average Intersection Delay

Average vehicle delay for all vehicles entering the intersection

2. Maximum Approach Delay

Average vehicle delay for the approach with highest delay

3. Average Queue Length

Value below which 50% of all observed queue lengths fall.

Measures Of Effectiveness for Operational Performance contd..

4. Degree Of Saturation

Measure of congestion on the roadway that is being used by traffic

5. Proportion Of Vehicles Stopped at Intersection

 Proportion of vehicles approaching intersection and required to stop

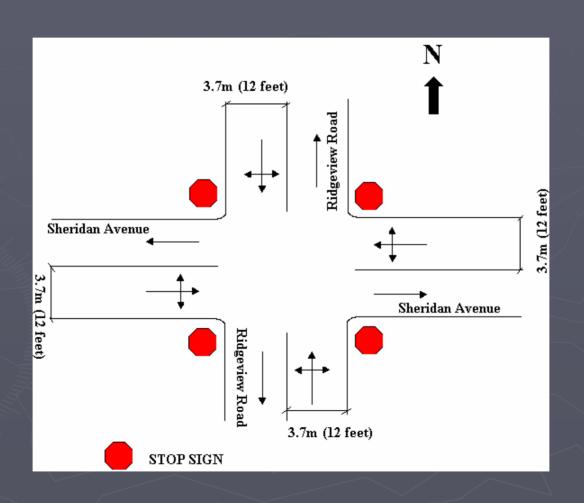
Maximum Proportion Of Vehicles Stopped

Highest proportion of vehicles stopped on one approach

Sites Studied

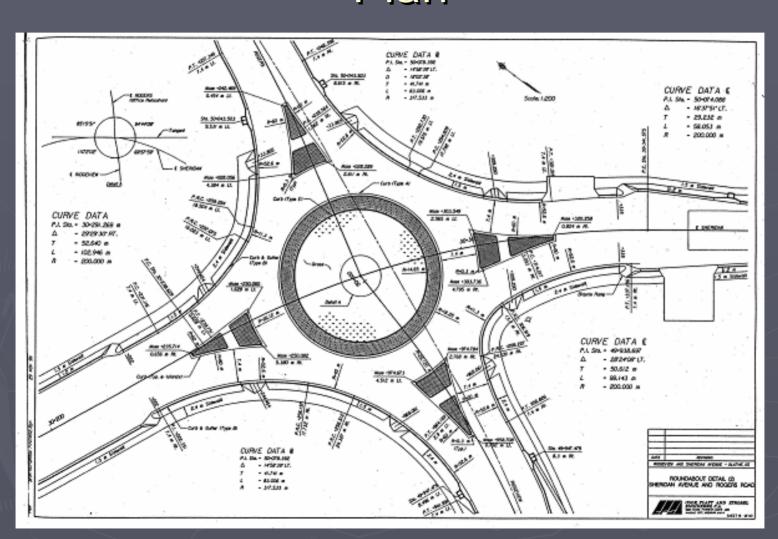
Total 11 sites

- Olathe: Ridgeview/Sheridan, Rogers/Sheridan (Before condition: AWSC) [2 sites]
- Topeka: Rice Road North and South (Before condition: Theoretical TWSC)[2 sites]
- : US-75/NW 46th Street (Before condition: Traffic Signal) [1 site]
- Newton: I-135/Broadway, I-135/First Street (Before condition: Theoretical Traffic Signal) [2 sites]
- Lawrence: Harvard Road/Monterey Way (Before condition: AWSC) [1 site]
- Paola: Old K.C road/K-68 (Before condition: AWSC) [1 site]
- Manhattan: Gary/Candlewood (Before condition: TWSC) [1 site]
- Hutchinson: 23rd street/Severance Avenue (Before condition: TWSC) [1 site]

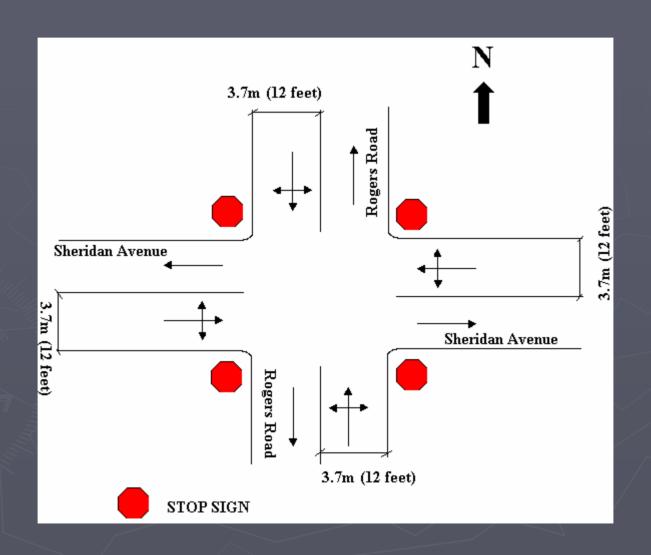

Pictures/Plans of Some Study Sites

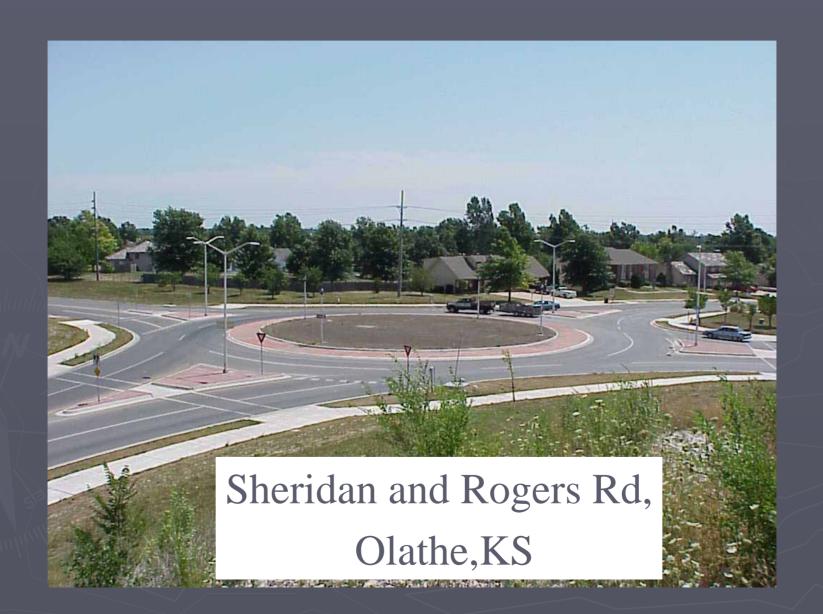
Olathe: Ridgeview/Sheridan, Rogers/Sheridan

 Figure showing geographic location of the two roundabouts

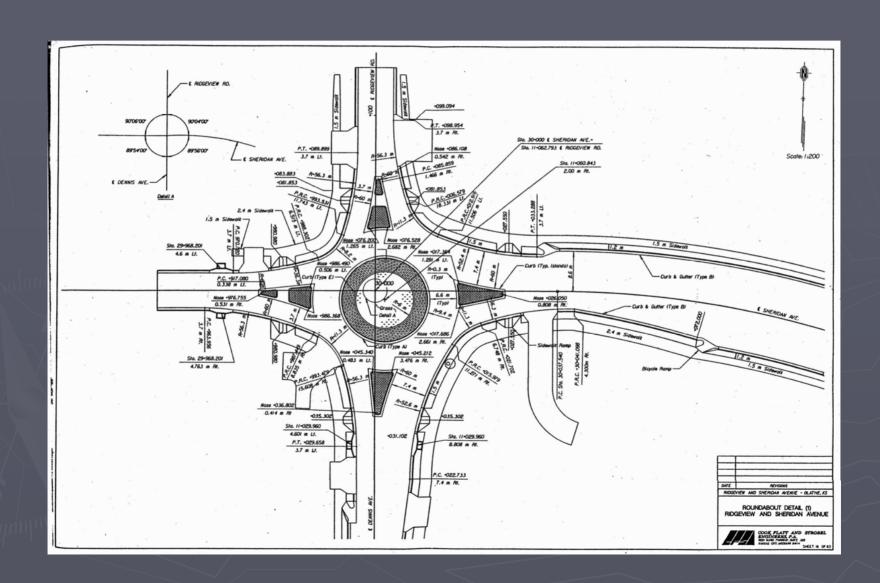


Ridgeview/Sheridan Before Condition

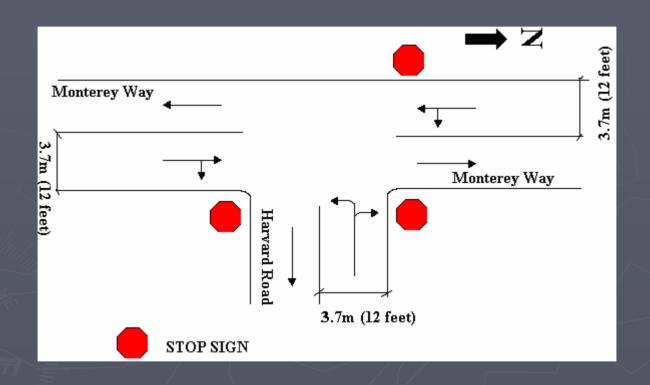




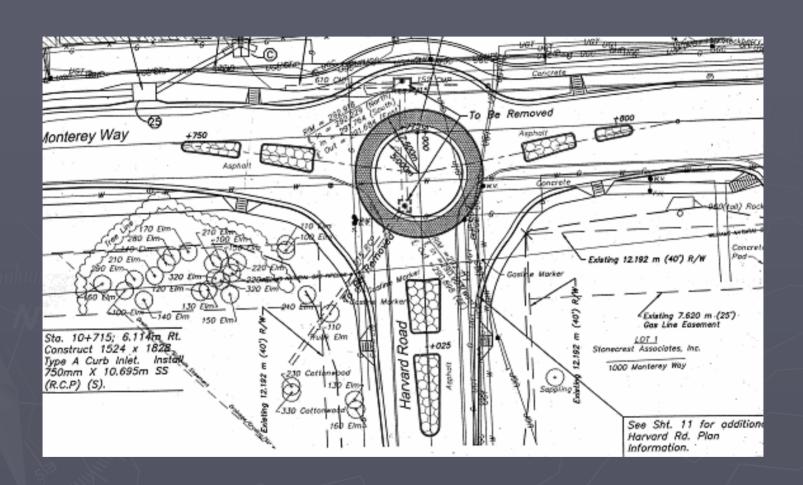
Ridgeview/Sheridan Roundabout Plan



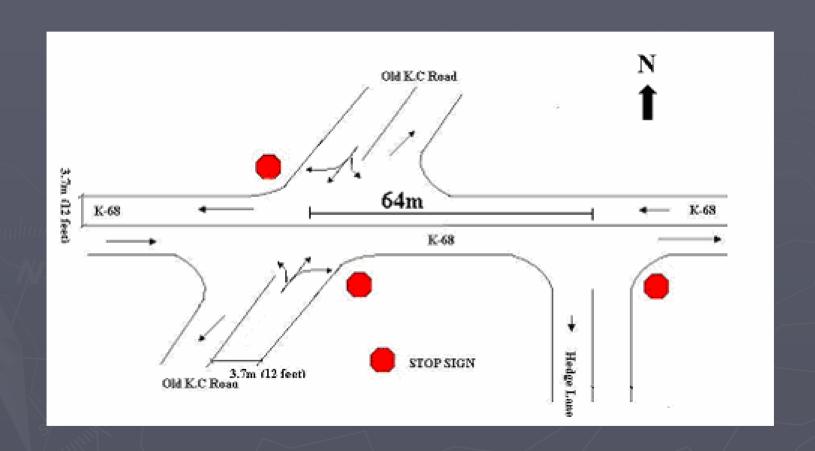
Rogers/Sheridan Before Condition



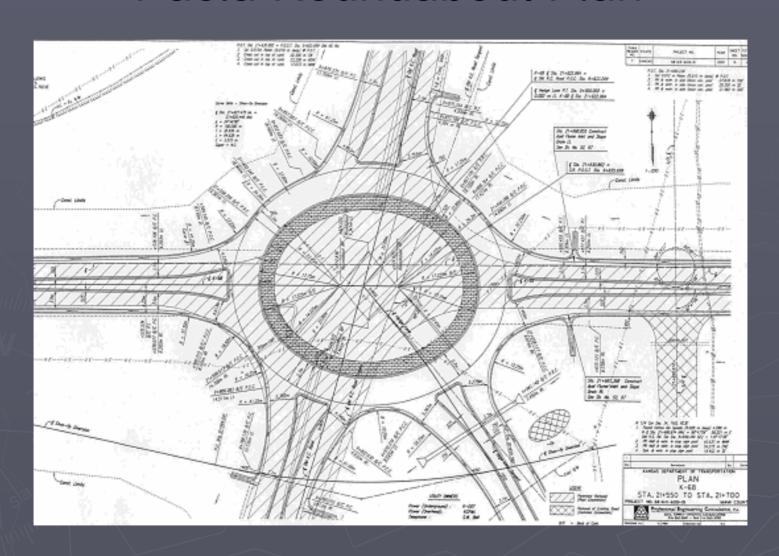
Rogers/Sheridan Roundabout Plan



Lawrence Before Condition



Lawrence Roundabout Plan



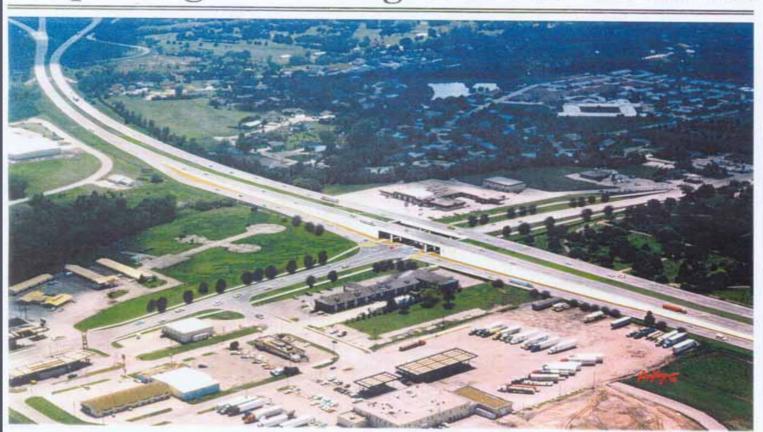
Paola Before Condition

Paola Roundabout Plan

I-70 & Rice Road (East Topeka Interchange)

Rice Road

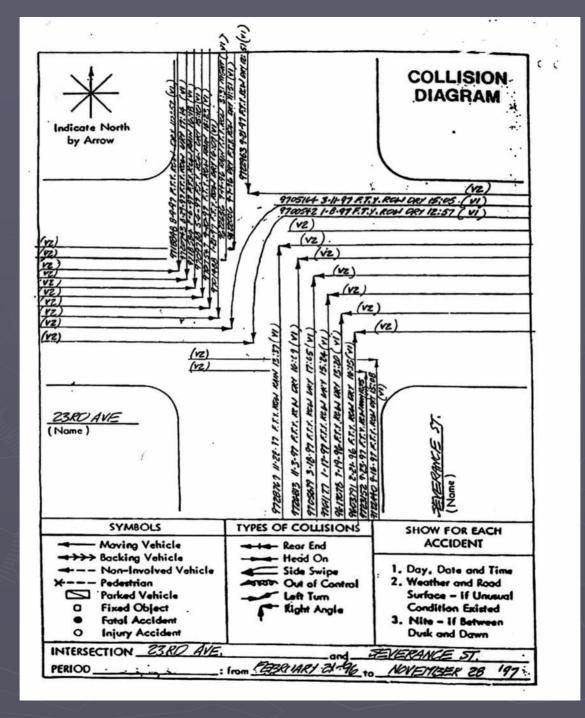
Rice Road



1135 and 1st Street, Newton

Proposed grade change I-135 at 1st Street

Proposed Intersection - Traffic Signal



Results

Kansas Average-Operational Performance			
Measures Of Effectiveness	Before	R.A	% Diff.
Average Intersection Delay (Seconds/Veh)	20.2	8	-65%
Max Approach Delay (Seconds/Veh)	34.4	10.4	-71%
95% Queue Length (Feet)	190	104	-53%
Degree Of Saturation- Intersection (v/c)	0.463	0.223	-53%
Proportion Stopped- Intersection (%)	58	29	-52%
Max Prop. Stopped (%)	62	37	-42%

Before: Signal/AWSC/TWSC, RA: Roundabout

Public Acceptance

- Generally poor
- Confusion with
 - Old circles, rotaries
 - Sometimes small circles
- Heard or experienced lots of bad things about large, old circles
- Don't like speed control (small circles)

Hutchinson, Roundabout The Hutchinson News

"If you do build a roundabout it will be the 'Mother of all Bad Intersections'. We could sell tickets to see it."

"They are easy to find; just look for a traffic jam and the ground piled up with broken glass and car parts."

CARS Organization

Public Acceptance Improves With Experience

Survey by IIHS
Feeling about Roundabouts

	<u>Before</u>	<u>After</u>
Strongly/Somewhat Favor	31%	63%
Strongly/Somewhat Oppose	55%	28%

Emissions

- Increase in vehicular traffic-major threat to clean air in many of the developed countries like USA
- Vehicular emissions dependent on:
 - Total amount of traffic
 - Intersection controls
 - Driving patterns and
 - Vehicular characteristics.

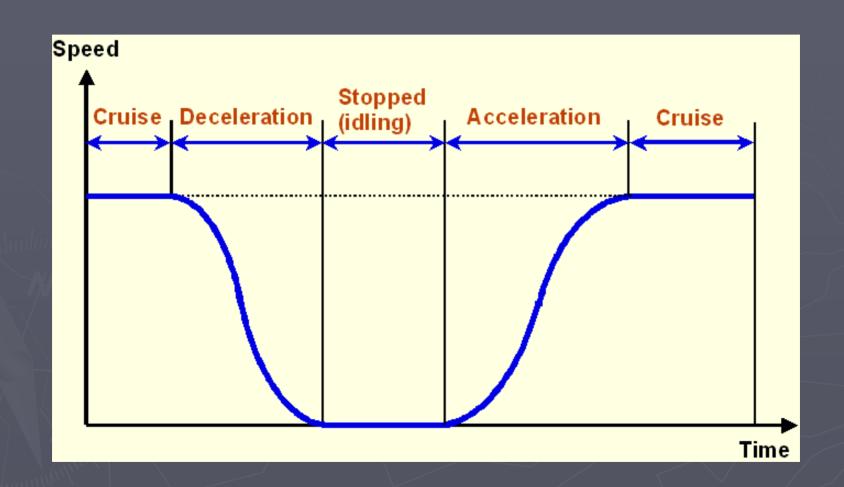
Emissions contd...

- Major pollutants
 - Carbon monoxide (CO),
 - Carbon dioxide (CO2),
 - Oxides of nitrogen (NOx),
 - Particulate matter (PM₁₀,PM_{2.5})
 - Hydrocarbons (HC) or Volatile Organic Compounds (VOC)
- Modern Roundabouts cut emissions

Two Emission Studies

- Roundabouts replacing two important signalized intersections in Bern, Switzerland
 - Reduced emissions and fuel savings by about 17%
 - Steadied the driving patterns

Bärenkreuzung/Zollikofen Project


- Roundabout replacing a signalized intersection Sweden found
 - Average decrease in CO emissions by 29%, NOx emissions by 21% and fuel consumption by 28% per car within the influence of the junction

Varhelyi, Sweden

SIDRA Measures Of Effectiveness Chosen for Kansas Environmental Impact Study

- 1. Carbon Monoxide (CO) Kg/hr
- 2. Carbon Dioxide (CO2) Kg/hr
- 3. Nitrogen Oxides (NOx) Kg/hr
- Hydrocarbons (HC) or Volatile Organic Compounds (VOC) Kg/hr

Drive-cycle model used by SIDRA

Kansas Average-Environmental Impact

Measures Of Effectiveness	Before	R.A	% Diff.
//	20,0.0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Carbon Monoxide (CO) Kg/hr	10.79	7.26	-33%
	7		100
Carbon dioxide (CO2) Kg/hr	237.30	127.59	-46%
	7		On
Oxides of Nitrogen (NOx) Kg/hr	0.348	0.225	-35%
			ince
Hydrocarbons (HC) Kg/hr	0.446	0.210	-53%

Before: Signal/AWSC/TWSC, RA: Roundabout

Conclusions

- Statistically significant reductions in delay, queueing, stopping and emissions – for all sites studied
- At most intersections with cross traffic and turning movements – a modern roundabout is the most viable alternative for safe, efficient vehicular traffic
- After construction public attitudes change to more positive
- Public needs more education

Statement from Discover Magazine

"The modern roundabout may be the safest most efficient traffic control device available today."

Summary of Emission Studies

- Modern Roundabouts reduce stopping and idling time at intersections thereby;
 - Make traffic flow more orderly
 - Reduce fuel consumption and vehicular emissions

For more information visit our websites:

http://www.ksu.edu/roundabouts http://trafficdiscussions.com

Caveats

- Keys to safety achieved by a well designed roundabout :
 - Deflection
 - Low-speed

Questions?

Ridgeview/Sheridan Roundabout-Traffic Volumes and Left turn percentages

AM (AWSC)	AM (Roundabout)	PM (AWSC)	PM (Roundabout)
708-1110 (veh/hr)	776-1124 (veh/hr)	1140-1626 (veh/hr)	1119-1784 (veh/hr)
33% Left turns	33% Left turns	35% Left turns	38% Left turns

Rogers/Sheridan Roundabout-Traffic Volumes and Left turn percentages

AM (AWSC)	AM (Roundabout)	PM (AWSC)	PM (Roundabout)
926-1625 (veh/hr)	931-1738 (veh/hr)	1220-1994 (veh/hr)	1244-2024 (veh/hr)
28% Left turns	28% Left turns	21% Left turns	22% Left turns

Paola Roundabout-Traffic Volumes and Left turn percentages

AM (AWSC)	AM (Roundabout)	PM (AWSC)	PM (Roundabout)
257-594 (veh/hr)	235-559 (veh/hr)	192-690 (veh/hr)	156-663 (veh/hr)
28% Left turns	29% Left turns	38% Left turns	40% Left turns

Hutchinson Roundabout-Traffic Volumes and Left turn percentages

AM (TWSC)	AM (Roundabout)	PM (TWSC)	PM (Roundabout)
449-983 (veh/hr)	415-864 (veh/hr)	514-1204 (veh/hr)	510-1110 (veh/hr)
13% Left turns	12% Left turns	13% Left turns	15% Left turns

Lawrence Roundabout-Traffic Volumes and Left turn percentages

AM (AWSC)	AM (Roundabout)	PM (AWSC)	PM (Roundabout)
	4	7	
227-536 (veh/hr)	263-447 (veh/hr)	412-733 (veh/hr)	442-692 (veh/hr)
30% Left turns	17% Left turns	26% Left turns	21% Left turns