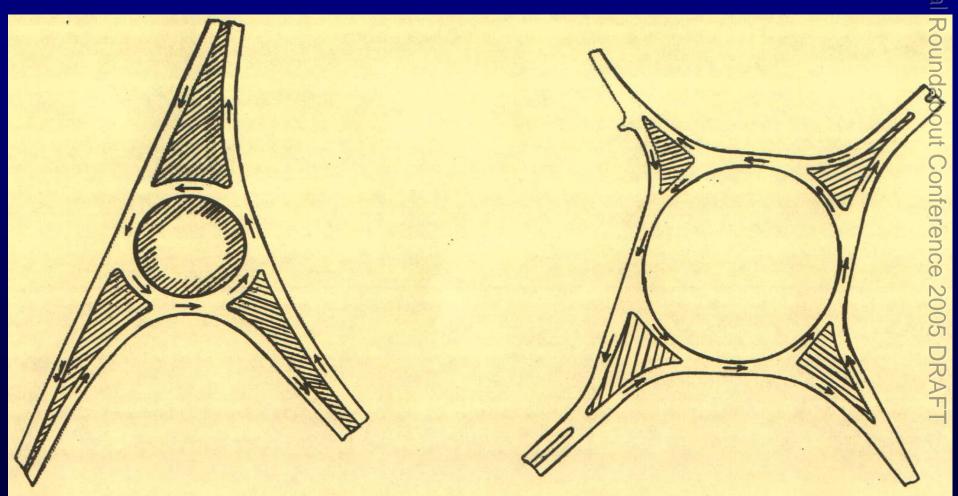
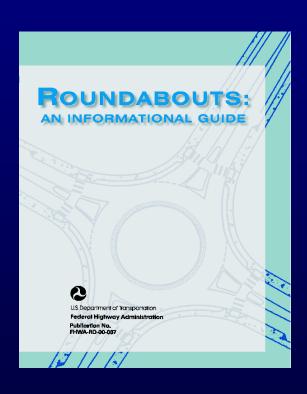
### **Roundabout Planning**

**22<sup>nd</sup> Century** 


Prof. A. R. Kaub, BSCE, MSCE, Ph.D., P.E. Chantilly, VA

### First things first - Open your mind




To achieve something new - Think outside of your experience

### **Background Traffic Circles/Rotaries**



### Today, we're fortunate to have a generalized guide that suggests ....



"The design problem is essentially one of determining a design that will accommodate the traffic demand while minimizing some combination of delay, crashes, and cost to all users, including motor vehicles, pedestrians, and bicyclists.

### **Generalized Categories of Roundabouts**

#### **Urban**

Mini
Low Capacity
Moderate Capacity
High Capacity

,

Single entry lane

**Double entry lanes** 

#### Rural

**Moderate Capacity High Capacity** 

Single entry lane Double entry lanes

# 05 DRAFT

### **Generalized Design Features**


|                                              |                     |                  |                      |                           |                      | <u> </u>                   |
|----------------------------------------------|---------------------|------------------|----------------------|---------------------------|----------------------|----------------------------|
| Design Elements                              | Mini-<br>Roundabout | Urban<br>Compact | Urban<br>Single-Lane | Urban<br>Double-Lane      | Rural<br>Single-Lane | Rural Double-lane          |
| Design Speed<br>(mph)                        | 15                  | 15               | 20                   | 25                        | 25                   | <b>30</b> Ound:            |
| Entering Lanes per approach                  | 1                   | 1                | 1                    | 2                         | 1                    | <b>2</b> dabout            |
| Inscribed Circle<br>Diameter (ft)            | 45 - 80             | 80 -100          | 100 -130             | 150 -180                  | 115 -130             | 180 - 200nfe               |
| Typical ADT<br>4-leg Roundabout<br>(veh/day) | 10,000              | 15,000           | 20,000               | Chapter 4<br>(20-40,000+) | 20,000               | Chapter 45<br>(20-30,0004) |

### And from construction of these, generalized (after-the-fact) safety comparisons

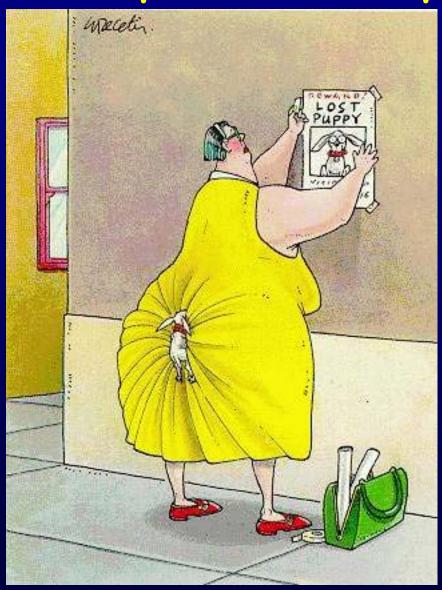
| Type of                         |       | Before | e Rounc           | labout           | Ro    | undab | out  | Percent change <sup>5</sup> |             |      |  |
|---------------------------------|-------|--------|-------------------|------------------|-------|-------|------|-----------------------------|-------------|------|--|
| roundabout                      | Sites | Total  | lnj. <sup>3</sup> | PDO <sup>4</sup> | Total | lnj.  | PDO  | Total                       | lnj.        | PDO  |  |
| Small/<br>Moderate <sup>1</sup> | 8     | 4.8    | 2.0               | 2.4              | 2.4   | 0.5   | 1.6  | -51%                        | <b>-73%</b> | -32% |  |
| Large <sup>2</sup>              | 3     | 21.5   | 5.8               | 15.7             | 15.3  | 4.0   | 11.3 | -29%                        | -31%        | -10% |  |
| Total                           | 11    | 9.3    | 3.0               | 6.0              | 5.9   | 1.5   | 4.2  | -37%                        | -51%        | -29% |  |

Have all of these been built with an accurate expectation of the result?

### Well we hope so but, action without accurately estimating the result can be VERY expensive.



# In Roundabout Planning, many elements need identification and definition before a reasonable decision can be reached.


- Traffic operations benefits (but delay of marginal value)
- Safety benefits (Nominal Safety versus Substantive Safety)
- Maintenance savings (save signal equipment & energy)
- Environmental enhancement (less stops, emissions & noise)
- R.O.W. saving (more intersection area but less queue storage)
- Traffic calming / aesthetics / older drivers (marginal value?)
- Pedestrian / bicycle operation & safety
- Desirable roundabout planning goal ?

\_"The roundabout problem is essentially one of determining a design that will accommodate the traffic demand while <u>minimizing some combination of delay,</u> <u>crashes, and cost to all users</u>" (FHWA Roundabout Guide) compared to other intersection traffic control types such as TWSC, AWSC or multi-phase signalized.

**But HOW do you do that?** 

Let's begin with understanding MACRO and MICRO

### Macroscopic vs Microscopic



Or NOMINAL (Macroscopic) versus Substantive (Microscopic)

### **EXAMPLE**

### **MACRO**scopic or **NOMINAL** Planning Model **Highway Capacity Software**

(Regression Models about 50-70% accurate compared to field data)

or

### **MICROscopic or SUBSTANTIVE Planning Model Netsim / Corsim**

- about 75% accurate compared to field data
- vehicle to vehicle interactions

### **MACROscopic Roundabout Delay Model**

(pg. 93 - FHWA Guide)

Delay = 
$$\frac{3600}{c_{m,x}}$$
 + 900 T  $\left(\frac{v_{x}-1}{v_{x-1}}\right)^{2}$  +  $\left(\frac{3600}{c_{m,x}}\right)\left(\frac{v_{x}c_{m,x}}{v_{x}c_{m,x}}\right)$  + 5

#### Where:

delay = average control delay (sec/veh)

V<sub>x</sub> = flow rate for movement x (veh/hr)

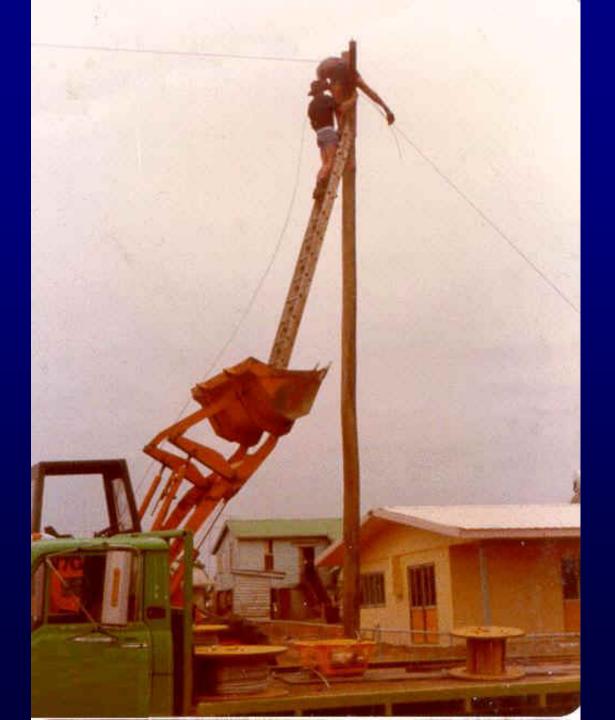
c<sub>mx</sub> = capacity of movement x (veh/hr)

T = analysis time (hour)

#### And:

V<sub>x</sub> / c<sub>mx</sub> = from HCM Roundabout analysis (pg. 17-45 & 17-99 (2000 HCM)

### HCM ROUNDABOUT DELAY & LOS Software


|                                   |                 |           |              |         |            |      |           |      |          |     |          | = |
|-----------------------------------|-----------------|-----------|--------------|---------|------------|------|-----------|------|----------|-----|----------|---|
| 2000 HCM ROUNDABOUT CONTROL       | EB              |           | NB           |         | WB         |      | SB        |      |          |     |          |   |
| LT FLOW RATE                      | Analysis :      | Period =  | 0.25         | V1      | 247        | V7   | 143       | V4   | 103      | V10 | 254      |   |
| THROUGH FLOW RATE                 |                 | Upper     | Lower        | V2      | 308        | V8   | 207       | V5   | 393      | V11 | 94       | 2 |
| RT FLOW RATE                      | Critical gap =  | 4.1       | 4.6          | V3      | 105        | V9   | 77        | V6   | 123      | V12 | 152      | _ |
| Effective LANES ON SUBJECT APPRO  | Follow-up =     | 4.1       | 4.6          |         | 1          |      | 1         |      | 1        |     | 1        | 2 |
| APPROACH FLOW RATE/lane           | (For TS - Assum | e Follow  | -up=Critical | l gap)  | 660        |      | 427       |      | 619      |     | 500      |   |
|                                   |                 |           |              |         | V4+V10+V11 |      | V1+V2+V10 |      | V1+V7+V8 |     | V4+V5+V7 | 2 |
| CIRCULATING FLOW RATE/lane        | 451             |           | 809          |         | 597        |      | 639       | -    |          |     |          |   |
| UPPER BOUND                       | 672             |           | 535          |         | 613        |      | 597       |      |          |     |          |   |
| LOWER BOUND                       |                 | 579       |              | 447     |            | 522  |           | 506  |          |     |          |   |
| CAPACITY/LANE UPPER               |                 |           |              |         | 672        |      | 535       |      | 613      |     | 597      | 2 |
| CAPACITY/LANE LOWER               |                 | 579       |              | 447     |            | 522  |           | 506  |          |     |          |   |
| V/C RATIO UPPER                   |                 | 0.98      |              | 0.80    |            | 1.01 |           | 0.84 | -        |     |          |   |
| V/C RATIO LOWER                   |                 | 1.14      |              | 0.96    |            | 1.19 |           | 0.99 | Ç        |     |          |   |
| APPROACH CONTROL DELAY (2000)     | 107.6           |           | 62.9         |         | 127.7      |      | 65.7      | 1    |          |     |          |   |
| APPROACH LOS (2000 HCM) =         |                 |           |              |         | F          |      | F         |      | F        |     | F        |   |
| HCM Compatible Roundabout Delay = | INDAB           | OUT LOS = |              | HCM LOS | 'F'        |      |           |      | C        |     |          |   |

### While some think reduced delay = reduced accidents, often "what seems to be....just isn't"




### Let's look at some situations that may not appear "Safe" ...... Are they?







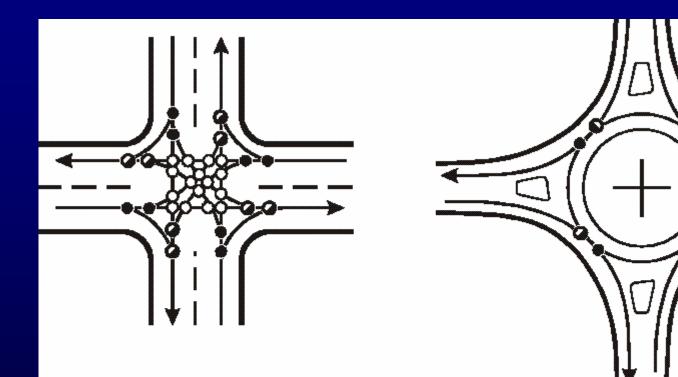




### And the winner ...is...... (welding on the gas tank)



# Safety Levels of Service Never Adopted by Engineering Profession Why Not?


Prior research says - Government has a Conflict of Interest because the Government entity that designs highways can't also admit to their being unsafe.

#### **THUS:**

Over Last 25 years - Engineering Profession created the HCM and often assumed Delay as a safety surrogate

OR create "Apparent Safety Models"
(variables are so macro, that the standard deviation is excessive making the models grossly unreliable predictors)

### MACROscopic Nominal Safety Model Comparison of Vehicular Conflict Points



- Merging 8
- Diverging 8
- O Crossing 16 32



- Diverging
- O Crossing 0

### **MACROscopic Nominal Safety Model**

Injury + Fatal Accidents/yr at Urban 4-leg Signalized

(FHWA-RD-99-094)

|    | A                                                             | С              | D           |       |  |  |  |  |  |  |  |
|----|---------------------------------------------------------------|----------------|-------------|-------|--|--|--|--|--|--|--|
| 1  | Multiple Linear Regression Model                              |                |             |       |  |  |  |  |  |  |  |
| 2  | Injury and Fatal Crashes Urban 4-Leg Signalized Intersections |                |             |       |  |  |  |  |  |  |  |
| 3  |                                                               | 25,000         | •           |       |  |  |  |  |  |  |  |
| 4  |                                                               | ADT Minor      | 20,000      |       |  |  |  |  |  |  |  |
| 5  |                                                               | Design Speed   | 50          |       |  |  |  |  |  |  |  |
| 6  | Variable                                                      | Variable Level | Coefficient | Value |  |  |  |  |  |  |  |
| 7  | Intercept                                                     |                | -5.745      | 1     |  |  |  |  |  |  |  |
| 8  | ADT Major                                                     |                | 0.574       | 1     |  |  |  |  |  |  |  |
| 9  | ADT Minor                                                     |                | 0.215       | 1     |  |  |  |  |  |  |  |
| 10 | Signal Timing                                                 | Pretimed       | -0.051      | 0     |  |  |  |  |  |  |  |
| 11 |                                                               | Semi-actuated  | 0           | 0     |  |  |  |  |  |  |  |
| 12 |                                                               | Fully actuated | 0.4         | 1     |  |  |  |  |  |  |  |
| 13 | Signal Phasing                                                | Two-phase      | 0           | 0     |  |  |  |  |  |  |  |
| 14 |                                                               | Multiphase     | -0.24       | 1     |  |  |  |  |  |  |  |
| 15 | Access Control on Major                                       | None           | -0.29       | 1     |  |  |  |  |  |  |  |
| 16 |                                                               | Partial        | 0           | 0     |  |  |  |  |  |  |  |
| 17 | Design Speed on Major (mph)                                   |                | 0.005       | 50    |  |  |  |  |  |  |  |
| 18 | Number of Lanes on Minor                                      | 3 or less      | -0.155      | 0     |  |  |  |  |  |  |  |
| 19 |                                                               | 4 or more      | 0           | 1     |  |  |  |  |  |  |  |
| 20 | Number of Lanes on Major                                      | 3 or less      | -0.163      | 0     |  |  |  |  |  |  |  |
| 21 |                                                               | 4 or 5         | -0.151      | 0     |  |  |  |  |  |  |  |
| 22 |                                                               | 6 or more      | 0           | 1     |  |  |  |  |  |  |  |

#### **ISSUES:**

- 1. INDIVIDUAL VEHICLES? NO
- 2. WHAT IF ALL VEHICLES TURN LEFT? Same RESULT
- 3. DESIGN SPEED or POSTED SPEED?
- 4. DATA COLLECTION RADII = 250 ft. (Excluded rear-end events in long queues)

Even the BEST FHWA accident models only produced predictions with about 35% accuracy.

### MACROscopic Nominal Safety Model British Roundabout

| 1  | A                                  | В         | С      | D      | Е      | F | G                     | Н      | I      | J      | K      | L             |    |
|----|------------------------------------|-----------|--------|--------|--------|---|-----------------------|--------|--------|--------|--------|---------------|----|
| 2  | <b>Injury and Fatal Accid</b>      | ents at R | ounda  | bouts  | ;      |   | ADT                   | 45,000 |        |        |        | 0110          |    |
| 3  |                                    |           |        |        |        |   |                       |        |        |        |        |               | ש  |
| 4  | Flow (Left, Through, Right) (%)    | 0.10      | 0.80   | 0.10   |        |   | ADT minor/ADT Total   | 0.44   |        |        |        |               | Į, |
| 5  |                                    |           |        |        |        |   | ADT Major             | 25,000 |        |        |        |               |    |
| 6  |                                    |           |        |        |        |   | ADT Minor             | 20,000 |        |        |        |               | D  |
| 7  | <b>Roundabout Characteristics</b>  |           |        |        |        | , |                       |        |        |        |        | 2             | 2  |
| 8  |                                    | Major     | Minor  | Major  | Minor  |   |                       |        |        |        |        |               |    |
| 9  | Approach                           | 1         | 2      | 3      | 4      |   | Approach              | 1      | 2      | 3      | 4      | כר            |    |
| 10 | e (m) - entry width                | 11        | 11     | 11     | 11     |   | Qe (entering flow)    | 12,500 | 10,000 | 12,500 | 10,000 |               |    |
| 11 | v (m) - approach width             | 8         | 8      | 8      | 8      |   | Qc (circulating flow) | 10,250 | 12,250 | 10,250 | 12,250 |               | 2  |
| 12 | Di (m) - inscribed circle diameter | 60        | 60     | 60     | 60     |   | Q exiting flow        | 12,000 | 10,500 | 12,000 | 10,500 | =             |    |
| 13 | Dc (m) - central island diameter   | 40        | 40     | 40     | 40     |   |                       |        |        |        |        |               | )  |
| 14 | Ra (m) - approach radius           | 300.00    | 300.00 | 300.00 | 300.00 |   |                       |        |        |        |        |               | D  |
| 15 | Re (m) - entry radius              | 70.00     | 70.00  | 70.00  | 70.00  |   | Approach              | 1      | 2      | 3      | 4      |               | 5  |
| 16 | Pm (%) - proportion motorcycles    | 0.01      | 0.01   | 0.01   | 0.01   |   | Accident Type         |        |        |        |        | Total by Type | ע  |
| 17 | Q (degrees) - angle between arms   | 90.00     | 90.00  | 90.00  | 90.00  |   | Entry - Circulating   | 0.22   | 0.20   | 0.22   | 0.20   | 0.83          |    |
| 18 | Pedestrians/day                    | 0         | 0      | 0      | 0      |   | Approaching           | 0.18   | 0.13   | 0.18   | 0.13   | 0.62          |    |
| 19 | ev - approach width correction     | 88        | 88     | 88     | 88     |   | Single Vehicle        | 0.29   | 0.25   | 0.29   | 0.25   | 1.08          | _  |
| 20 | R - (Di / Dc)                      | 1.50      | 1.50   | 1.50   | 1.50   |   | Other                 | 0.13   | 0.12   | 0.13   | 0.12   | 0.50          | _  |
| 21 | Ca - approach curvature            | 0.00      | 0.00   | 0.00   | 0.00   |   | Pedestrian            | 0.00   | 0.00   | 0.00   | 0.00   | 0.00          |    |
| 22 | RF - ratio factor                  | 0.73      | 0.73   | 0.73   | 0.73   |   | Total for Approach    | 0.82   | 0.69   | 0.82   | 0.69   | 3.03          | 1  |
| 23 | Ce - entry path curvature          | 0.01      | 0.01   | 0.01   | 0.01   |   |                       |        |        |        |        | _             |    |
|    |                                    |           |        |        |        |   | ROUNDABOUT FAT        | 3.03   |        |        |        |               |    |

BUT, why isn't speed a factor in injury prediction?

### **Alternative Nominal Macro-models**

(Not sensitive to significant variables)

- 1. Maryland DOT
  - a. Annual accidents = 1.53 / mev
  - b. Annual injury accidents = 0.11 / mev
- 2. Other Roundabout Software
  - a. Delay based on HCM
- b. Linear regression accident models

  Crashes/Yr = 1.64 x10<sup>-12</sup> \* ADT 1-way 1.17 \* Posted Speed 4.12 \* Length

Vehicle Path Radius 1.91

These never mention accuracy of the accident models – accuracy is assumed

......that's like selecting an open-heart surgeon without checking references.......
Smart?......Good Planning?......



"Nurse, get on the internet, go to SURGERY.COM, scroll down and click on the 'Are you totally lost?' icon."

Who picked this surgeon?.....I did????

### Proper Roundabout Planning – the goal

- Develop preliminary design (Urban-low trucks/low entry speeds or Rural)
- Determine if right-of-way available
- Examine planning steps
  - Think GLOBALLY Regional considerations
  - Think LOCALLY Substantive Operations
    - Single / Dual lane ?
    - Speed?
    - Geometry Inscribed diameter / central island diameter / bypass lane ?
    - Define SUBSTANTIVE (microscopic) SAFETY elements & value
    - Define NOMINAL (macroscopic) DELAY elements & value
    - Combine SAFETY + DELAY Values (\$) to estimate annual performance
    - Compare to Alternate Traffic Control Strategies
- Estimate Potential Safety of Proposed Design (Safety LOS)

### Roundabout DELAY Analysis for planning purposes

In planning studies the value of delay is highly variable and is often excluded in the B/C ratio, thus a Macroscopic model like the HCM is generally used to minimize data input needs and the cost of analysis.

### **Highway Capacity Manual – 2000**

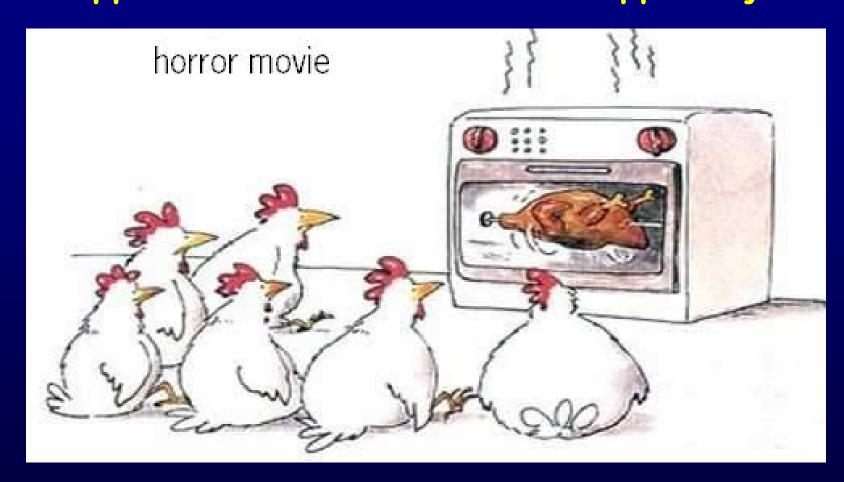
with the worst-case assumptions of:

- 1. Critical gap = 4.6 seconds similar to Rt. Turn "Yield" of 1985 HCM (5.0 sec), and conforms to 2003 roundabout gap research (4.2 sec at 50% acceptance).
- 2. No Follow-up time since each driver must make independent gap selection.
- 3. Delay is a consistent user-defined \$-value over all scenarios

### **But what about safety?**

### Roundabout SAFETY ANALYSIS

In planning studies the value of safety is entirely dependent on the predicted number and cost of injuries assuming that fatalities are rare & unpredictable events and that fender-bender (pdo) events are an economic benefit that creates jobs and have no negative value, thus the use of a MICROscopic accident prediction model to define injury accidents is ESSENTIAL.


#### But let's also assume:

If the risk of injury is <u>not unacceptable</u>, thus crashes, injuries (and even unlucky fatal injuries) are expected but undesirable by-products of mobility, and thus some Un-safe events <u>ARE undesirable but acceptable</u>.

The problem is: How do you define "some" or how many unsafe events?

But first – let's talk about MICROscopic accident prediction and then we'll define SAFE versus UNSAFE!

### To begin, the one thing you do know about safety is that....if it happened to others...it could well happen to you.



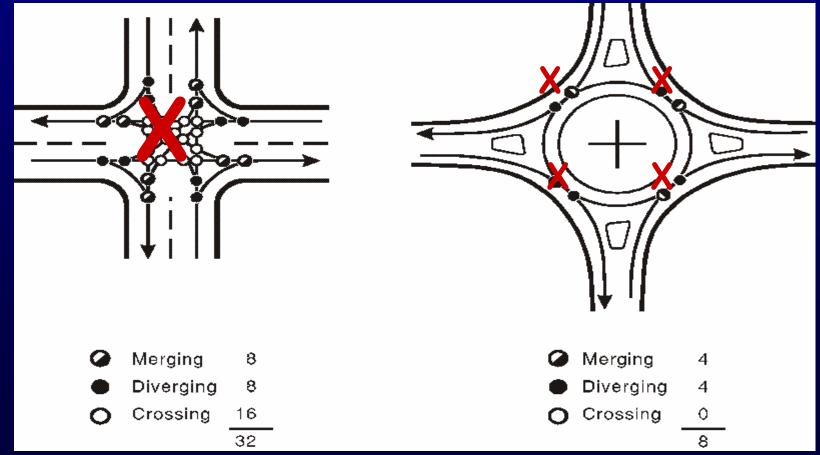
So, rather than waiting for accidents and death to happen & then correct them with "safety programs" which are nothing but lists of failures, we have new technology to help us be pro-active in traffic safety using.....

### Traffic Conflicts as a surrogate for predicting accidents:

- 1. NOT Tail light braking conflict studies
  - 2. NOT Conflict Point comparisons
- 3. YES Theoretical "Opportunities for Conflict"

### **Tail-light braking conflicts**

#### **FACT**


Actual application of Taillight braking was never found to be consistently correlated to accidents



### **Conflict Point Comparisons**

### **FACT**

Conflict Points are correlated to accident potential but the dynamics are very complex

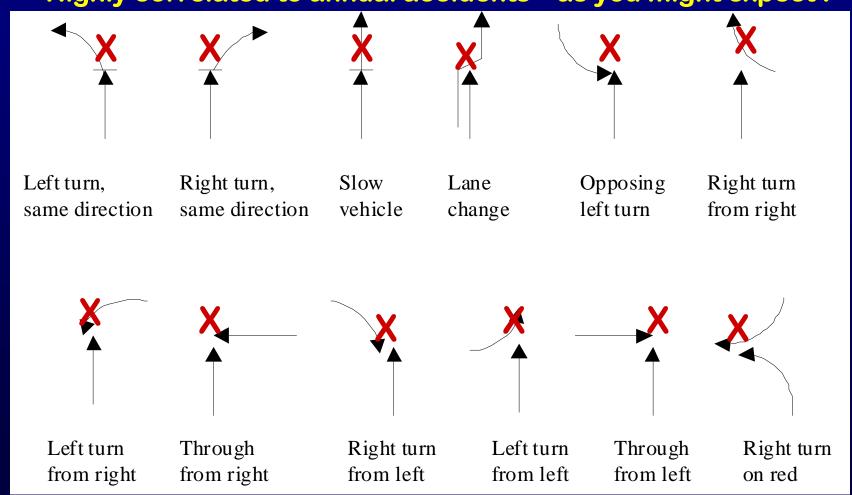


# For Planning Purposes Define Roundabout Safety Benefits with

# MICROscopic Sunstantive Model based on individual vehicle conflict-opportunities

(Traffic Safety Software @www.TRAF-Safe.com)

#### Assumptions for conservative analysis:


- 1. Fatal events are not estimated or valued but are added to injury accidents
- 2. Injury and vehicle damage are consistent user-defined \$values.

### What is a Conflict Opportunity?

An actual occurrence in which 2 or more vehicles or users approach one another such that there is a theoretical probability of collision assuming unchanged trajectories.

### **Theoretical Opportunities for Conflict**

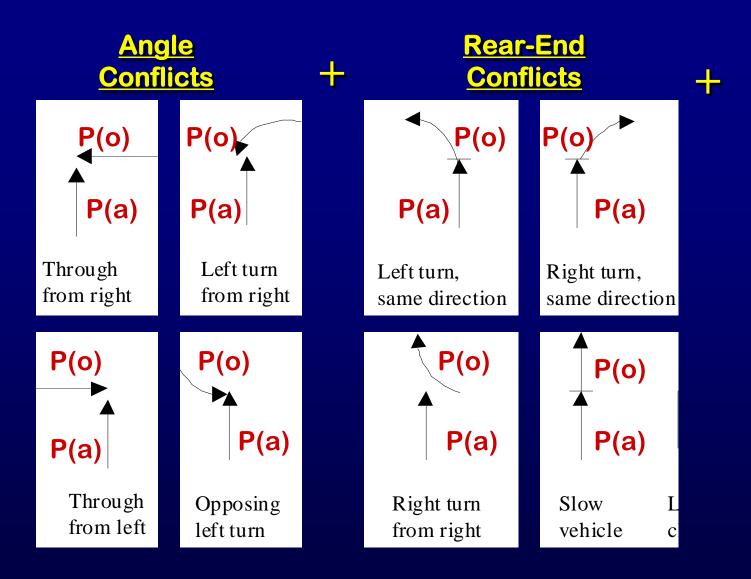
FACT
Highly correlated to annual accidents – as you might expect!



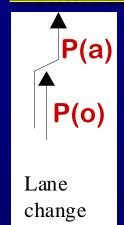
### University of Virginia/VDOT VTRC Report 04-R11

"Development of Left Turn Lane Guidelines"

March 2004


### **Recommendations**

"The safety surrogate measure used in this study was solely based on conflict opportunities."


"Future research should quantify the extent to which conflict opportunities can predict crashes such that the impact of safety can be better incorporated ..." (pg. 46)

### **Conflict Opportunity Accident Research**

- 1. <u>"Predicting Annual Intersection Accidents with Conflict Opportunities"</u> presented to TRB, Washington, D.C., January, 2001 and published in the proceedings of the AASHTO/ITE/TRB Urban Street Symposium; A.R. Kaub & K.M. Taylor, Dallas, Texas; June, 1999 www.nationalacademies.org/trb/publications/ec019/ec019.pdf
- 2. <u>"A Corridor Road Safety Audit with Safety Software"</u>
  presented to TRB, Washington, D.C., January 2000 and published in the proceedings of the ITE Conference New Tools for Enhancing Transportation Safety in the 21st Century, A.R. Kaub & J.A. Kaub, Orlando, Fl., 1999.
- 3. <u>"Predicting Annual Intersection Accidents with Conflict Opportunities"</u>, presentations to University of Virginia Civil Engineering / VTRC / VDOT planning staffs, A.R. Kaub, 1995-1999.
- 4. <u>"Validation of a Conflict Opportunity Intersection Accident Prediction Model"</u> presented to TRB, Washington, D.C., 1998 and published in the proceedings of the TRB 2nd Access Management Conference; A. R. Kaub, Vail, Colorado; 1996.
- 5. "Validation of the Probable Conflict Opportunity Accident Software for Two-way Stop Control Intersections", Florida DOT Research Contract # B9212, A.R. Kaub, 1996.
- 6. "Managing Highway Access with Conflict Opportunity Crash Prediction Software" A.R. Kaub, presented to the USDOT, FHWA/Turner-Fairbank Safety Research, 1993.
- 7. "Design Guide for Auxiliary Passing Lanes on Rural Two-Lane Highways using Conflict Opportunity Accident Estimation", A.R. Kaub & W.D. Berg, TRR 1195, 1987.



Sideswipe Conflicts



Fixed Object / Single Vehicle Events

# What is Conflict Opportunity Technology?

Originally Based on 1968
General Motors Conflict Opportunity Research

by Perkins & Harris

Angle Accidents = f(Angle Conflict Opportunities)

Rear-End Accidents = f(Rear-end Conflict Opportunities)

Sideswipe Accidents = f(Sideswipe Conflict Opportunities)

Fixed Object/Single Vehicle Accidents = f(FO/SV Conflict Opportunities)

But
GM couldn't integrate these into Total Annual Accidents

# Today's Conflict Opportunity Technology does what GM couldn't do

### **Assumptions**

- Typical Drivers, Vehicles, Environment, Profile, Adequate SD
- 4 Conflict Types- Angle, Rear-end, Sideswipe, Single Vehicle

#### **Common Poisson Conflict Opportunity Forms**

$$P(Arrival) = e^{-mean \ arrival \ flow \ rate}$$
 &  $P(Opposition) = e^{-mean \ opposing \ flow \ rate}$ 

(Arrival Exposure Time)

Probability of Conflict (angle, rear, side, single) =  $P(Arrival) \times P(Opposition)$ 

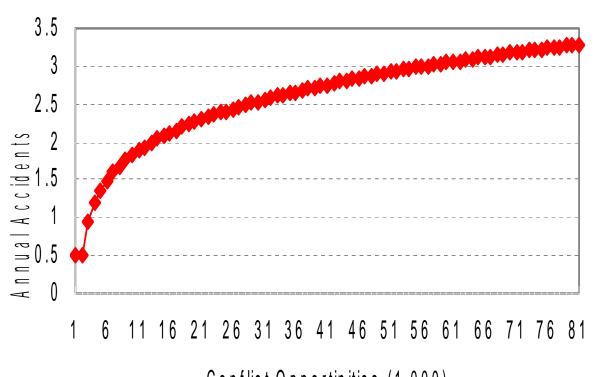
#### **Annual Summation of Independent Conflict Types**

```
Annual Conflict Opportunities = ± a (<u>P-Angle CO</u>) ± b (<u>P-Rear end CO</u>)

± c (<u>P-Sideswipe CO</u>) ± d (<u>P-Single Vehicle</u>)
```

a,b,c,d = Speed-based coefficients calibrated to National Accident Data using the drivers <u>visual perceptive capability</u> for each type of conflict

# Convert Annual Probable Conflict Opportunities to Annual Accidents


Annual Accidents = <u>Total Annual Conflict Opportunities</u> Conflict Opportunity/Accident Ratio

Conflict Opportunity = Family of Curves calibrated to

Accident Ratio speed, geometry, volume for each type of traffic control device

# Example Annual Conflict Opportunity/Accident Ratio

(One of a Family of Volume, Geometry, and Speed, Dependent Curves)



Conflict Opportinities (1,000)

At low volumes, it takes
few opportunities for
conflict to generate one
accident, but at higher
volumes it takes
exponentially increasing
opportunities to generate
that same accident.

That's because as volume increases, both reduced speeds and car-following aid the drivers visual perception to generate safer operation over all accident types.

# **Finite Element Analysis**

Finite Element Analysis Finite Element Analysis

Finite Element Analysis

Finite Element Analysis

Finite Element Analysis

Time Finite Element Analysis

Lane Finite Element Analysis

**Approach Finite Element Analysis** 

Traffic Control Finite Element Analysis

**Intersection Finite Element Analysis** 

Corridor Finite Element Analysis

**New Accident & Injury Prediction Technology** 

# Inputs

Traffic Control selection (TWSC, AWSC, Signal or Roundabout)

Peak Hour Am and Pm volume by lane with other hours interpolated

Approach geometry & turn bay length

Approach speeds & turning radii

Numerous HCM-based vehicle & flow variables

Actuated Signals (each hour of day)

Automatic - Cycle length and phase selection

Automatic - Through and turn phase duration

Automatic - Hourly timing plans using sophisticated ICU

**Almost 150 HCM Compatible INPUTS** 

# **Outputs**

**Hourly and Annual Delay** 

Hourly & Annual Accidents
Injury-based Safety Levels of Service & Lifetime Risk of Injury
&

**Performance Index** 

∑ Utility (\$Delay/yr + \$Injury accidents/yr )

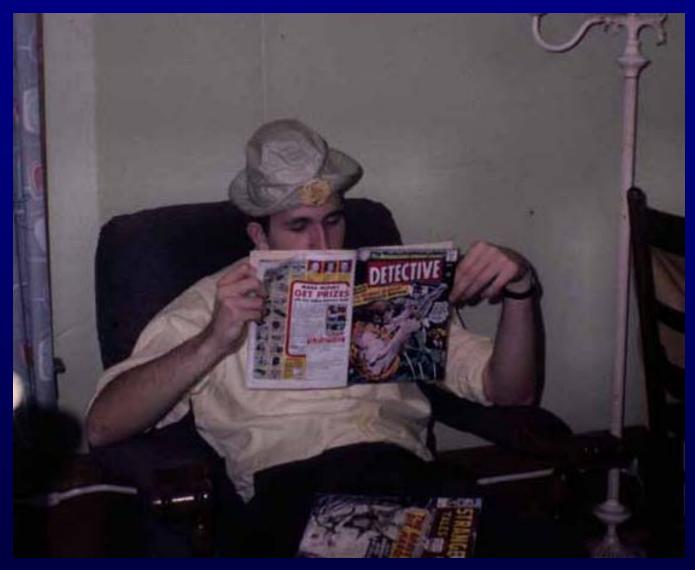
### **Planning and Design Goal:**

If the traffic control type selection is "Safe", then minimize Performance Index (minimum delay and injury values) and over all "Safe" types of traffic control devices.

### **So Unique - US Patent # 6,662,191**

#### United States Patent.

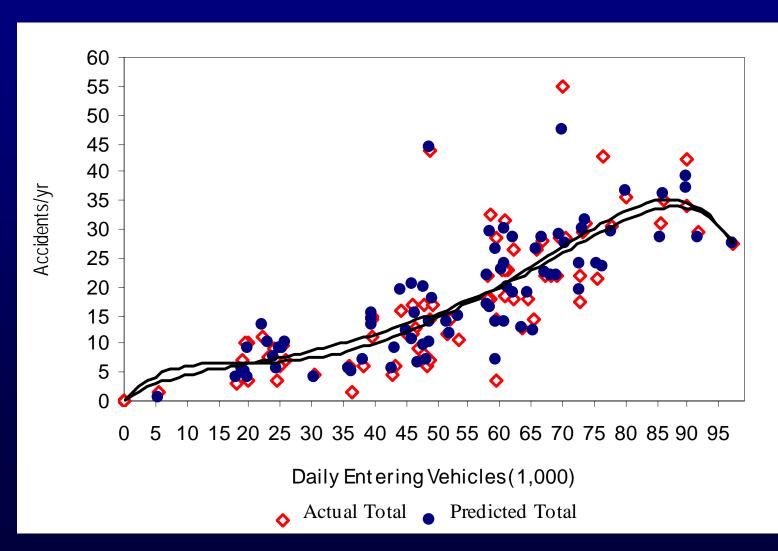
6,662,141


December 9, 2003

Traffic safety prediction model

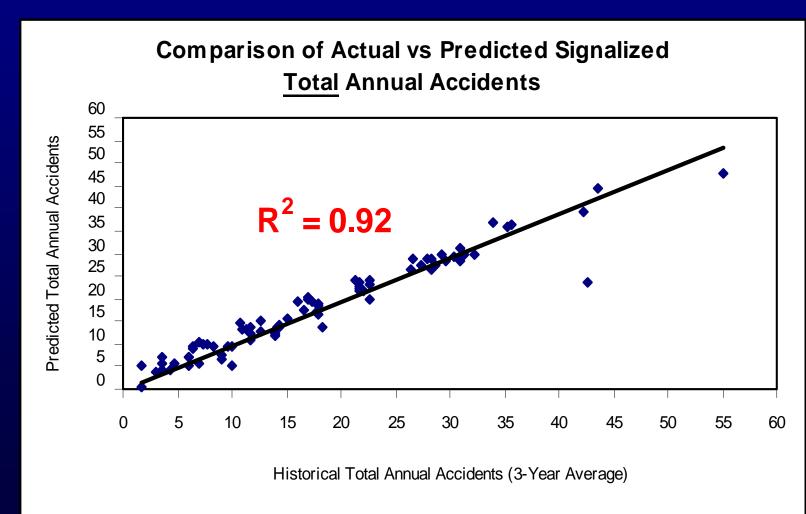
#### Abstract.

A Traffic Safety prediction Computer Program (TRAF-SAFE) and sub-models for predicting the number of accidents, injuries and fatalities expected annually at an intersection or series of intersections based on the particular intersection and roadway features. A finite analysis approach to an intersection is used to break the intersection into discrete elements such as lanes, tumbays, stop control signals, and traffic flow rates. The total annual expected accidents can then be calculated as a summation of the interrelation of the individual elements. A Poisson's distribution is used to statistically estimate the likelihood of the individual vehicles occurring within a discrete time frame being investigated. The conflict probabilities between various permutations of the traffic flow is then calculated and summed to determine the number of conflicts for the intersection or roadway. The conflicts are then converted to expected accidents, and the accident level is converted to injury involvements and Safety Levels of Service for the intersection and roadway.


### Ya, sure I read all about it...

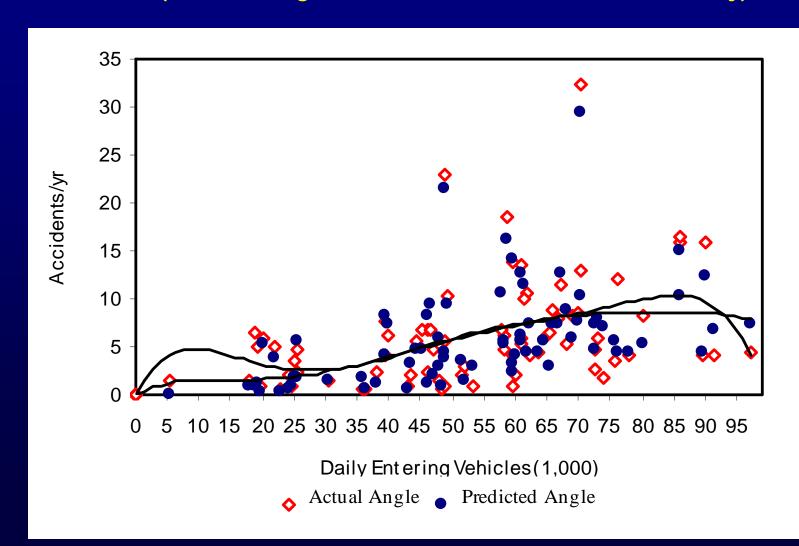


...but how do I know it works?


### Signals Total Accidents/yr

(Northern Virginia Actual Site Data and Accident History)

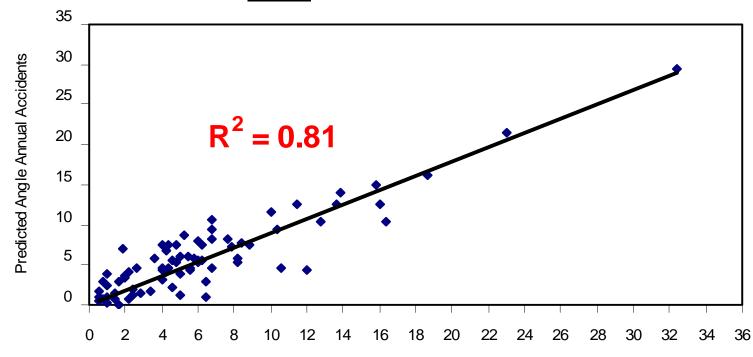



### **Signals Total Accident Validation**

(Data From 100 Signalized Intersections in Northern Virginia)



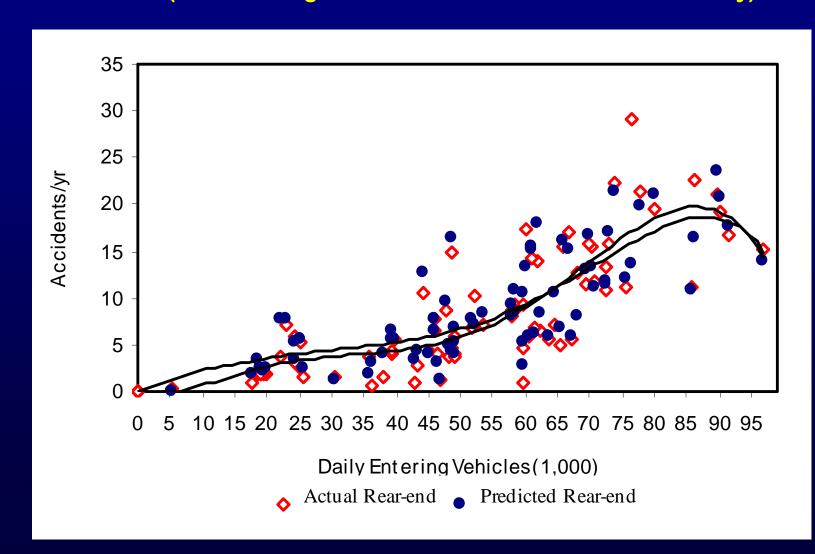
### Signals Angle Accidents/yr


(Northern Virginia Actual Site Data and Accident History)



### Signals Angle Accident Validation

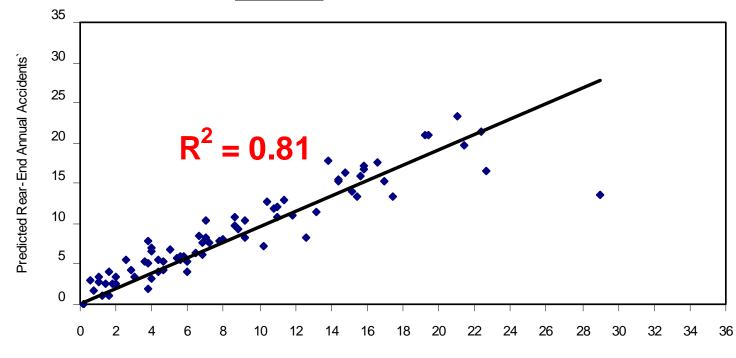
(Northern Virginia Actual Site Data and Accident History)


# Comparison of Actual vs Predicted Signalized <u>Angle</u> Annual Accidents



Historical Total Annual Accidents (5-Year Average)

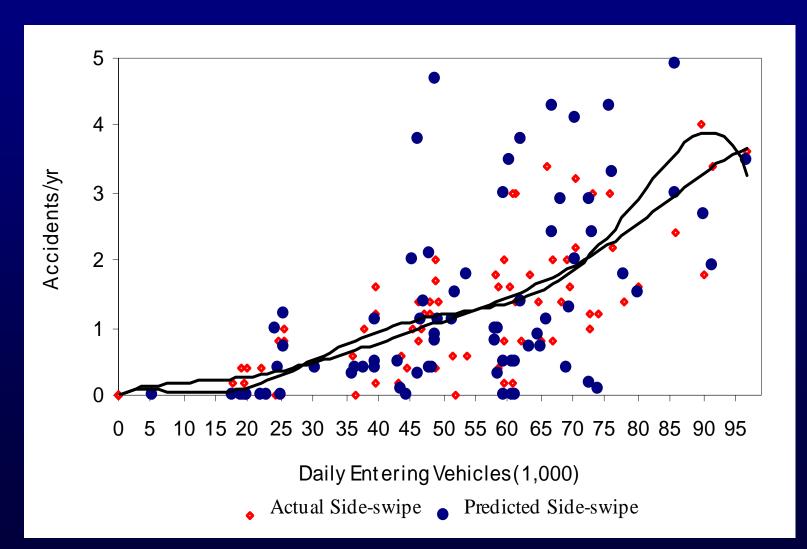
### Signals Rear-End Accidents/yr


(Northern Virginia Actual Site Data and Accident History)



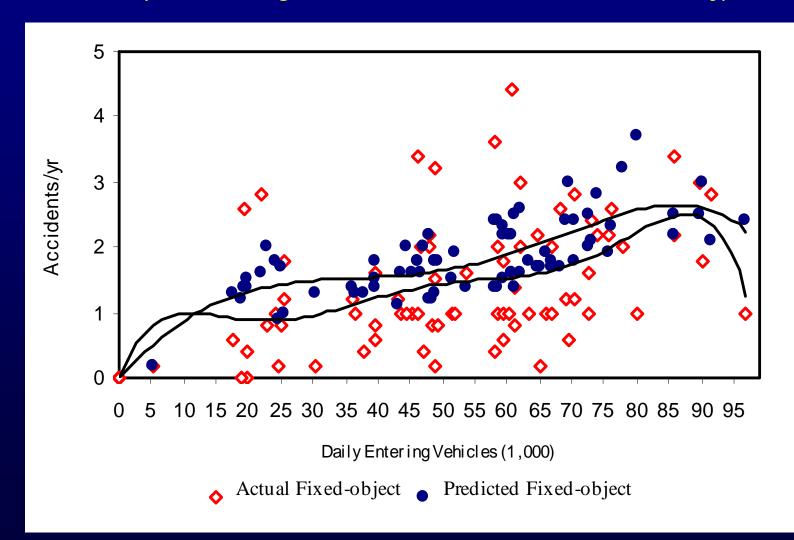
### **Signals Rear-End Accident Validation**

(Northern Virginia Actual Site Data and Accident History)



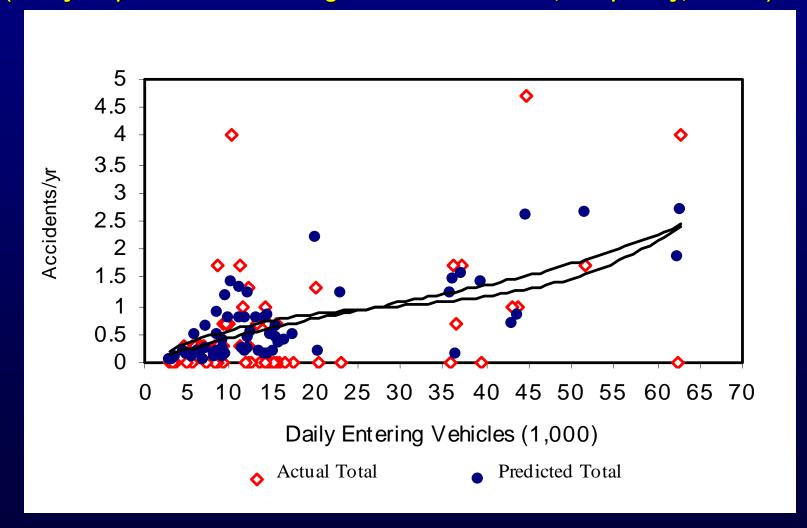



Historical Rear-End Annual Accidents (5-Year Average)


### Signals Sideswipe Accidents/yr

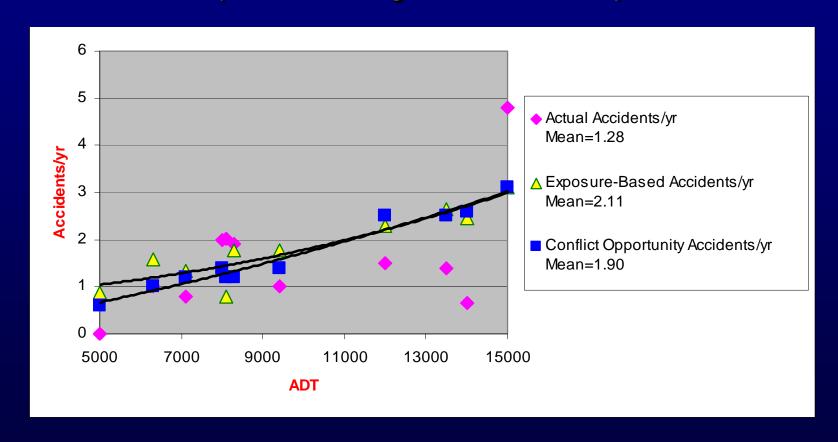
(Northern Virginia Actual Site Data and Accident History)




### Signals Fixed Object/Single Vehicle Accidents/yr

(Northern Virginia Actual Site Data and Accident History)

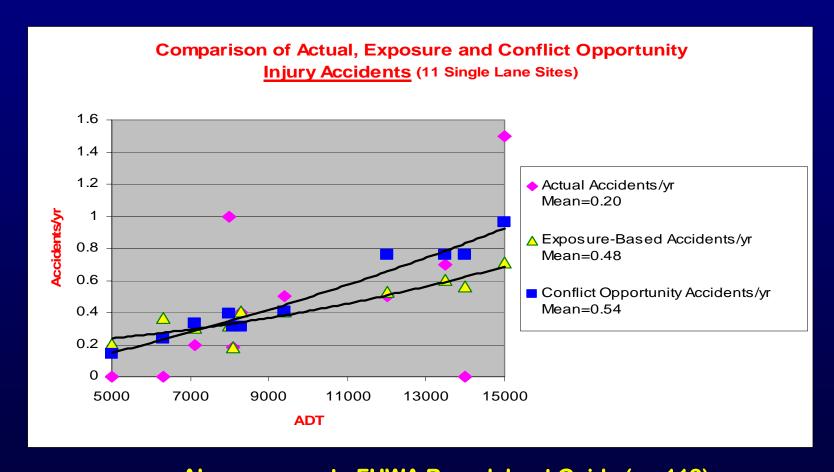



### **Unsignalized TWSC Total Accident Validation**

(2-Way Stop Data From 65 Unsignalized Intersections, Tampa Bay, Florida)



# Single Lane Roundabout Actual vs MDOT vs Conflict Opportunity


(for 11-MDOT single lane Roundabouts)



Also compare to FHWA Roundabout Guide (pg 112): Average Single-Lane Roundabout = 2.4 Accidents/yr

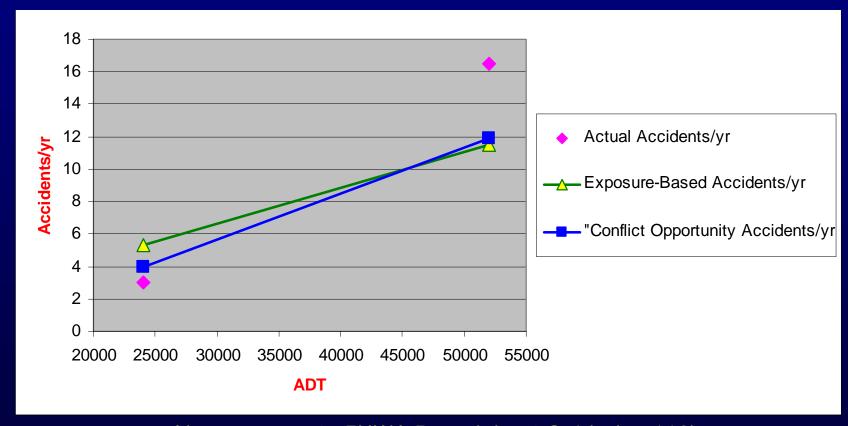
### Roundabout Injury Accident Validation

(for 11-MDOT Roundabouts)



Also compare to FHWA Roundabout Guide (pg 112): Average Single-Lane Roundabout = 0.5 Injury Accidents/yr

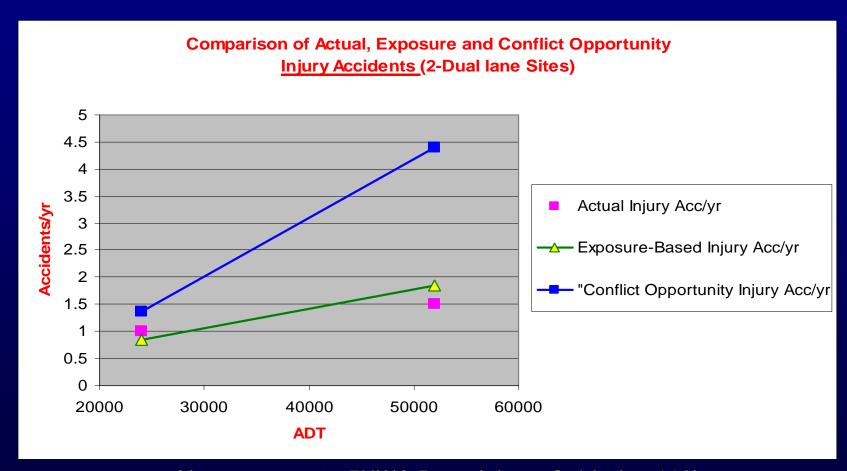
# National Roundabout Conference DRAFT


# **Roundabout Accident Type Validation**

(for 11-MDOT Single lane Roundabouts)

| Percentage<br>Event Type        | Conflict Opportunity Average from MDOT Data | Australia              | Germany  | Switzerland |
|---------------------------------|---------------------------------------------|------------------------|----------|-------------|
| Within Roundabout               | 55<br>(includes sideswipes)                 | 51                     | 30       | 46          |
| Rear-End                        | 15                                          | 18                     | 28       | 13          |
| S <u>ideswipe</u>               | 0                                           | 4<br>(within roundabou | <b>O</b> | 0           |
| Single vehicle/<br>Fixed Object | 30                                          | 18                     | 17       | 35          |

### **Dual Roundabout Accident Validation**


(for 2-MDOT Roundabouts)



Also compare to FHWA Roundabout Guide (pg 112): Average Dual-Lane Roundabout = 15.3 Accidents/yr

### **Dual Roundabout Injury Accident Validation**

(for 2-MDOT Roundabouts)



Also compare to FHWA Roundabout Guide (pg 112): Average Dual-Lane Roundabout = 4.0 Injury Accidents/yr

### In General

### **Conflict Opportunity Annual Accident Forecasts**

#### 1. Signalized Intersections -

- Over 80% accuracy (<1 STD) for 100 signalized intersections
- Angle & Rear-End Predictions within 15-20 percent of historical
- Total Accident Predictions within 10-15 percent of historical

### 2. Unsignalized Intersections (TWSC)

- Over 70% accuracy for 100 TWSC intersections

#### 3. Roundabouts

- Over 80% accuracy compared to MDOT/FHWA averages

#### 4. Overall -

Conflict Opportunity Technology offers annual accident estimates that are BETTER than ANY existing technology.

#### <u>Transportation Research Record 1111 (Berg & Ha - 1995)</u>

"The use of Opportunity-based accident measures will yield significantly different hazard rankings compared to conventional accident-rate expressions."

# Well ok it works, but what seems like a "good idea" isn't necessarily a "safe idea"



So, how do you define something as "safe"?

### SAFE or UNSAFE?

### **Intersection Safety LOS**

```
Quantity Thresholds (Upgrade Traffic Control Type from ITE)
```

DRIVEWAY > 1 in 3 Years (< 0.33/ Year)

**YIELD** > 2 in 3 Years (< 0.66/ Year)

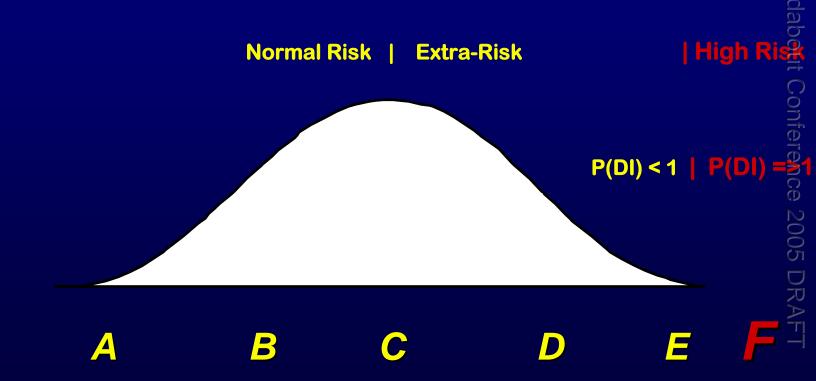
2-Way STOP > 5 in 1 Year (MUTCD)

**ALL-WAY/SIGNALS??** 

### **Quality or Severity Thresholds**

Injury-based Theoretical Guidance where

Lifetime Risk of Disabling Injury should be < 1.0, thus where


Probability < 1.0 Normal or Extra-Risk Levels (Safety LOS A-E)

Probability > 1.0 High-Risk of Disabling Injury (Safety LOS F)

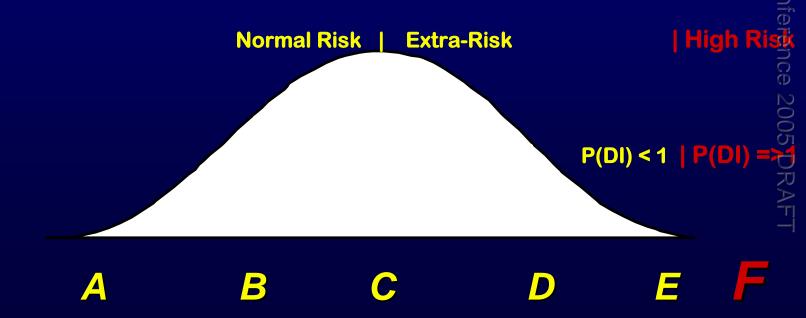
# Intersection Severity Levels of Service

**Probability of Disabling Auto Injury per Lifetime** 

(assume driving risk is normally distributed throughout lifetime)



### **How to Define Safety LOS E/F Threshold**

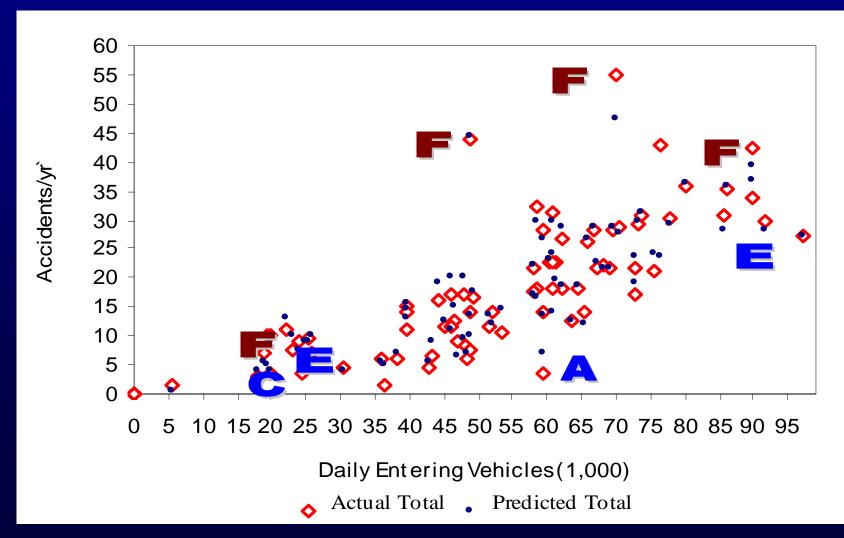

### OSHA Standard Risk Threshold

The lifetime risk of death in any occupation should be less than 1 death in 1000 events

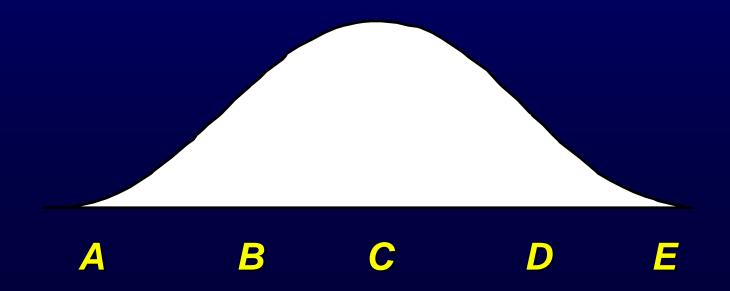
Using this guide, Ossenbruggen's FHWA analysis:

To achieve no more than 1 fatal accident in 1000 accidents, the number of injury accidents per year (which require professional treatment) should be less than about 7.8 / 10,000 ADT (entering an intersection).

("A Method of Identifying Hazardous Highway Locations using the Principle of Individual Lifetime Risk" by P.J. Ossenbruggen in Risk, Health, Safety & Environment, 1998, pg. 90 and funded by FHWA)




### **Define Safety LOS Example**


7.8 Maximum Annual Injury accidents / 10,000 ADT (entering any intersection) where 25% of all injury accidents occur at signal control 5% of all injury accidents at stop control 70% on all injury accidents at uncontrolled intersections/driveways thus Maximum Signalized Injury Threshold = 0.25 \* 7.8 = < 2.0 Injury accidents-yr/10,000 ADT **Maximum Roundabout Injury Threshold = 50% of Signalized threshold (estimate)** Maximum Stop Control Injury Threshold = 20% of Signalized threshold = 0.05 \* 7.8 = < 0.40 Injury accidents-yr/10,000AD thus for an urban 4-leg Stop control Intersection with 24,495 ADT the Maximum Injury accidents < 24,495 \* 0.40 = < 0.98 IA/yr10.000 | High Risk Normal Risk | Extra-Risk  $IA < 0.98 \mid IA > 0.98 \mid$ 

# Intersection Injury-based Safety Levels of Service

(Northern Virginia Data)



# Safe or Unsafe? Only Defined by Professionally Qualified Engineering Judgment



# But what if the Safety LOS = F?

1. Warn the driver – MUTCD



- 2. Begin active correction, or
- 3. Begin Planning to improve the problem within a reasonable timeframe (within TIP, or 3-5 year program),
- 4. But the "Do Nothing" alternative is <u>NOT</u> acceptable.

# How does Conflict Opportunity analysis operate for Roundabouts?

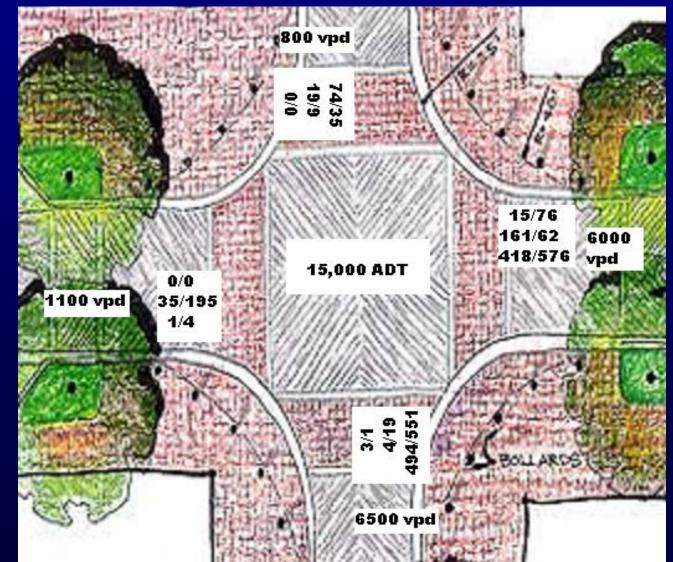
#### **Answer**

Identical with an All-Way Stop control intersection <u>except</u> assume:

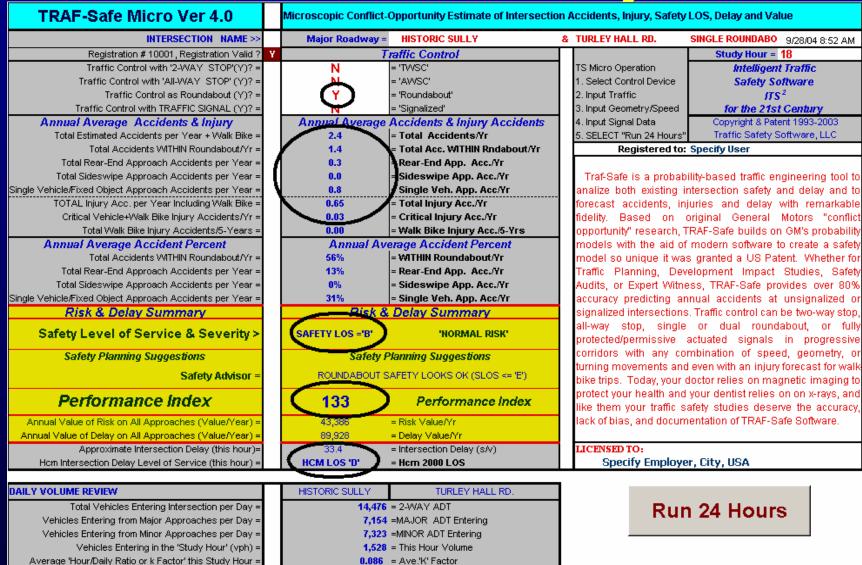
#### <u>Delay</u>

- 1. "Yield" not "Stop" Control HCM 4.6 seconds / critical gap
- 2. No "Follow-up" gap each gap acceptance is mutually exclusive
- 3. Right turn "bypass" lanes eliminate right-turns on the specific approach.

#### Safety with Conflict Opportunities


- 1. Frontal Angle conflicts identical to all-way stop except critical gap = "Yield"
- 2. Rear-end conflicts identical to all-way stop except gap = "Yield"
- 3. Sideswipe/Merge conflicts occur "within" single & dual lane roundabout but only on the "approach" to dual lane (similar to multi-lane all-way stop) + distance-based correction to conform to US roundabout accident history.
- 4. Fixed Object/Single Vehicle replaced by "low speed" exposure-based model
- 5. Right "Bypass" lanes eliminate right-turn conflicts on the specific approach.

#### So, you say you hate learning new computer software



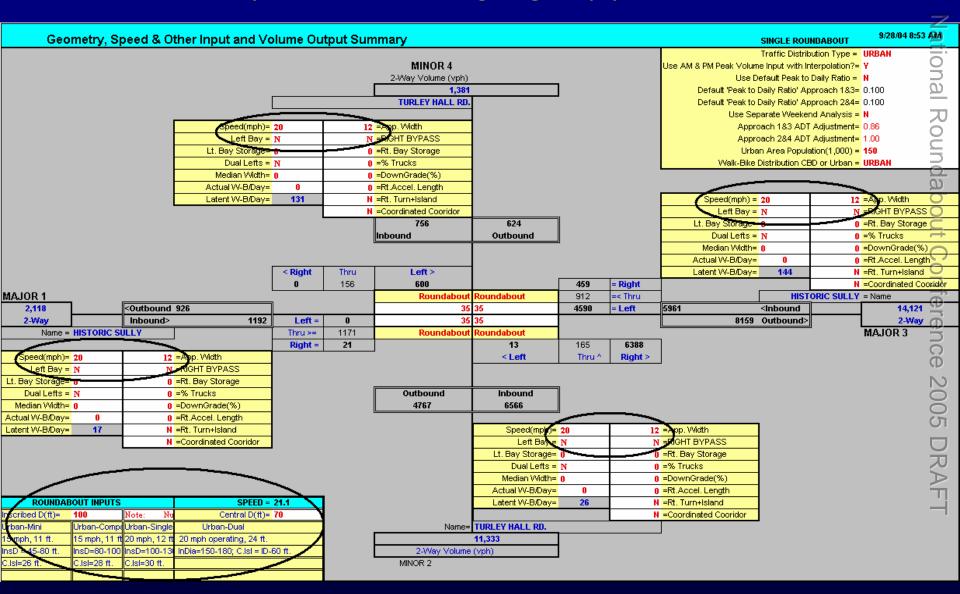

Well, maybe it's not that bad...... Let's take a look

# Example Project - Dulles Discovery Rezoning Is a roundabout acceptable ? How does Roundabout performance compare ?



#### CONFLICT OPPORTUNITY Safety Software




What are the Inputs?

## Input AM & PM Volume by Lane


#### (other hours automatically interpolated)

| Estimated I | Hourly Turi   | ning Move    | ments fron | n Am and/o | r Pm Peak     | : Data or In | put Daily  | Turning Mo | vements       |              | HISTORIC SL | ILLY       | 8            | TURLEY HAL   | L RD.      |            | 9/28/04 9:30 AM |
|-------------|---------------|--------------|------------|------------|---------------|--------------|------------|------------|---------------|--------------|-------------|------------|--------------|--------------|------------|------------|-----------------|
|             | Protected LTs | ·Υ           |            |            | Protected LT: | : Y          |            |            | Protected LT: | Y            |             |            | Protected LT | Y            |            |            | Joj             |
|             |               | Protected RT | N N        |            |               | Protected RT | N          |            |               | Protected RT | : N         |            |              | Protected RT | : N        |            | 8               |
| ENDING      | Н             | ISTORIC SULL | .Υ         | Approach 1 | TL            | JRLEY HALL F | D.         | Approach 2 | Н             | STORIC SULL  | .Υ          | Approach 3 | TL           | JRLEY HALL F | RD.        | Approach 4 | HOURLY          |
| Hour        | EB Left       | EB Thru      | EB Right   | Walk-Bike  | NB Left       | NB Thru      | NB Right   | Walk-Bike  | WB Left       | WB Thru      | WB Right    | Walk-Bike  | SB Left      | SB Thru      | SB Right   | Walk-Bike  | VOLUME          |
| 12-1 AM     | 0             | 5            | 0          | 0          | 0             | 1            | 38         | 0          | 14            | 2            | 2           | 0          | 2            | 1            | 0          | 0          | 65              |
| 1-2         | 0             | 1            | 0          | 0          | 0             | 2            | 25         | 0          | 8             | 3            | 0           | 0          | 4            | 2            | 0          | 0          | 45=             |
| 2-3         | 0             | 1            | 0          | 0          | 0             | 1            | 16         | 0          | 6             | 2            | 0           | 0          | 2            | 1            | 0          | 0          | 31 🔂            |
| 3- 4        | 0             | 1            | 0          | 0          | 0             | 1            | 20         | 0          | 9             | 4            | 0           | 0          | 3            | 1            | 0          | 0          | 39              |
| 4-5         | 0             | 2            | 0          | 0          | 0             | 1            | 35         | 0          | 19            | 7            | 0           | 0          | 5            | 1            | 0          | 0          | 710             |
| 5-6         | 0             | 7            | 0          | 0          | 0             | 1            | 135        | 0          | 84            | 32           | 3           | 0          | 20           | 5            | 0          | 0          | 288             |
| 6-7         | 0             | 19           | 0          | 0          | 2             | 3            | 311        | 0          | 227           | 87           | 8           | 0          | 47           | 12           | 0          | 0          | 716—            |
| 7-8         | 0             | 35           | 1          | 0          | 3             | 4            | 494        | 0          | 418           | 161          | 15          | 0          | 74           | 19           | 0          | 0          | 1224            |
| 8-9         | 0             | 24           | 0          | 0          | 2             | 3            | 390        | 0          | 283           | 109          | 10          | 0          | 58           | 15           | 0          | 0          | 895             |
| 9-10        | 0             | 16           | 0          | 0          | 2             | 2            | 307        | 0          | 192           | 74           | 7           | 0          | 46           | 12           | 0          | 0          | 659             |
| 10-11       | 0             | 11           | 0          | 0          | 1             | 2            | 244        | 0          | 131           | 50           | 5           | 0          | 36           | 9            | 0          | 0          | 490             |
| 11-12       | 0             | 11           | 0          | 0          | 2             | 2            | 278        | 0          | 128           | 49           | 5           | 0          | 42           | 11           | 0          | 0          | 527—            |
| 12-1 PM     | 0             | 73           | 1          | 0          | 0             | 15           | 435        | 0          | 214           | 23           | 28          | 0          | 28           | 7            | 0          | 0          | 825 <u></u>     |
| 1-2         | 0             | 83           | 2          | 0          | 0             | 15           | 431        | 0          | 246           | 27           | 33          | 0          | 27           | 7            | 0          | 0          | 871             |
| 2-3         | 0             | 90           | 2          | 0          | 0             | 14           | 399        | 0          | 266           | 29           | 35          | 0          | 25           | 7            | 0          | 0          | 866             |
| 3-4         | 0             | 118          | 2          | 0          | 0             | 16           | 451        | 0          | 348           | 37           | 46          | 0          | 29           | 7            | 0          | 0          | 1054            |
| 4-5         | 0             | 152          | 3          | 0          | 0             | 17           | 498        | 0          | 448           | 48           | 59          | 0          | 32           | 8            | 0          | 0          | 1265            |
| 5-6         | 0             | 195          | 4          | 0          | 1             | 19           | 551        | 0          | 576           | 62           | 76          | 0          | 35           | 9            | 0          | 0          | 1528            |
| 6-7         | 0             | 138          | 3          | 0          | 0             | 16           | 455        | 0          | 409           | 44           | 54          | 0          | 29           | 7            | 0          | 0          | 1154            |
| 7-8         | 0             | 79           | 2          | 0          | 0             | 10           | 303        | 0          | 234           | 25           | 31          | 0          | 19           | 5            | 0          | 0          | 709             |
| 8-9         | 0             | 47           | 1          | 0          | 0             | 7            | 209        | 0          | 139           | 15           | 18          | 0          | 13           | 3            | 0          | 0          | 454             |
| 9-10        | 0             | 34           | 0          | 0          | 0             | 6            | 176        | 0          | 101           | 11           | 13          | 0          | 11           | 3            | 0          | 0          | 356             |
| 10-11       | 0             | 20           | 0          | 0          | 0             | 4            | 118        | 0          | 58            | 6            | 8           | 0          | 8            | 2            | 0          | 0          | 224             |
| 11-12       | 0             | 10           | 0          | 0          | 0             | 2            | 68         | 0          | 29            | 3            | 4           | 0          | 4            | 1            | 0          | 0          | 121             |
|             | Left Turn     |              | Right Turn |            | Left Turn     |              | Right Turn |            | Left Turn     |              | Right Turn  |            |              | Through      | Right Turn |            | 14,476          |
|             | 0             | 1171         | 21         |            | 13            | 165          | 6388       |            | 4590          | 912          | 459         |            | 600          | 156          | 0          |            | TOTAL           |
| DAILY TOTAL | Approach=     | 1192         |            |            | Approach=     | 6566         |            |            | Approach=     | 5961         |             |            | Approach=    |              |            |            |                 |
| Percent     | 0%            | 98%          | 2%         | 0          | 0%            | 3%           | 97%        | 0          | 77%           | 15%          | 8%          | 0          | 79%          | 21%          | 0%         | 0          |                 |
|             | MA            | JOR APPROA   | ACH #1     | Walk-Bike  | MIN           | OR APPROA    | CH #2      | Walk-Bike  | MA            | JOR APPROA   | ACH #3      | Walk-Bike  | MA           | JOR APPRO    | ACH #4     | Walk-Bike  |                 |

### Input Geometry by Approach

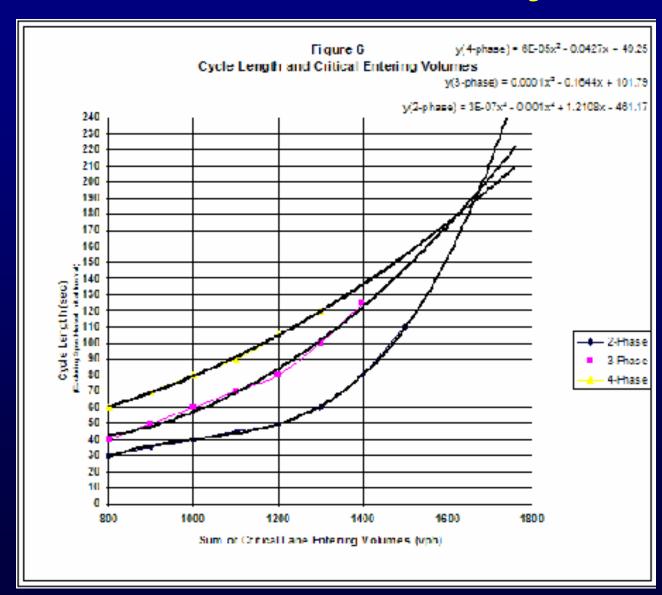


### Check Delay Output



## Check Queuing Output

| Left Bay and Thi | rough Queue le  | ength (feet)    |           | HISTORIC :        | SULLY TURLEY HA   | ALL RD.                | SINGLE ROUND    | )ABC 9/28/04 8:5 <mark>2</mark> /АМ |
|------------------|-----------------|-----------------|-----------|-------------------|-------------------|------------------------|-----------------|-------------------------------------|
| Percentile =     | 98              | 70              | 98        | 70                | 98                | 70                     | 98              | 70 🔍                                |
|                  | Аррго           | oach 1          |           | Approach 2        |                   | Approach 3             | A               | pproach 4                           |
| HOUR             | Thru Lane Queue | Thru Lane Queue | Thru Lane | Appr. 2 Thru Lane | e Queue Thru Lane | Appr. 3 Thru Lane Queu | e Thru Lane App | pr. 4 Thru Lane Queue               |
| 1                |                 |                 | 0         |                   | -                 |                        | 0               | 0                                   |
| 2                | 0               | 0               | 0         | 2                 | 0                 | 1                      | 0               | 0 0                                 |
| 3                | 0               | 0               | 0         | 1                 | 0                 | 1                      | 0               | 0 =                                 |
| 4                | 0               | 0               | 0         | 1                 | 0                 | 1                      | 0               | 0 0                                 |
| 5                | 0               | 0               | 0         | 2                 | 0                 | 2                      | 0               | 1 0                                 |
| 6                | 0               | 1               | 0         | 8                 | 0                 | 7                      | 0               | 1 0                                 |
| 7                | 0               | 1               | 0         | 24                | 4 0               | 23                     | 0               | 2 0                                 |
| 8                | 0               | 3               | 0         | 59                | 0                 | 79                     | 0               | 4 🚍                                 |
| 9                | 0               | 2               | 0         | 35                | 5                 | 33                     | 0               | 3                                   |
| 10               | 0               | 1               | 0         | 23                | 3 0               | 18                     | 0               | 2                                   |
| 11               | 0               | 1               | 0         | 17                | 7                 | 11                     | 0               | 1 5                                 |
| 12               | 0               | 1               | 0         | 20                | 0                 | 11                     | 0               | 2                                   |
| 13               | 0               | 5               | 0         | 46                | 6 0               | 18                     | 0               | 1 =                                 |
| 14               | 0               | 6               | 0         | 46                | 6 0               | 22                     | 0               | 1 💬                                 |
| 15               | 0               | 6               | 0         | 39                | 0                 | 24                     | 0               | 1 0                                 |
| 16               | 0               | 9               | 0         | 53                | 0                 | 38                     | 0               | 1 0                                 |
| 17               | 0               | 13              | 0         | /11               | 0                 |                        | 0               | 2 100                               |
| 18               | 0               | { 20 }          | 0         | 100               |                   | ( 153 )                | 0               | (2)                                 |
| 19               | 0               | 11              | 0         | 55                | 0                 |                        | 0               | 40                                  |
| 20               | 0               | 5               | 0         | 24                | 4 0               | 20                     | 0               | 1 07                                |
| 21               | 0               | 3               | 0         | 14                | 4 0               | 10                     | 0               | 1                                   |
| 22               | 0               | 2               | 0         | 11                | L O               | 7                      | 0               | 1 7                                 |
| 23               | 0               | 1               | 0         | 7                 | 0                 | 4                      | 0               | 1 5                                 |
| 24               | 0               | 1               | 0         | 4                 |                   | 2                      | 0               | 0                                   |
| MAX QUEUE (ft) = | 0               | 20              | 0         | 10                | 6 0               | 153                    | 0               | 4                                   |


### If Signals - Input HCM-based Signal Data

| SIGNAL INPUT                                      | MAJOR ROADWAY           | MINOR ROADWAY        |          |                              | COMMENTS     |                 |                  | 9/3/04 12:0 | 3 PM   |
|---------------------------------------------------|-------------------------|----------------------|----------|------------------------------|--------------|-----------------|------------------|-------------|--------|
| Signal Timing Selection 'Traf-Safe' or 'Actual' = | TRAF-SAFE               | = Traf-Safe or A     |          |                              |              |                 | Study Hour =     |             | =      |
| Controller Actuated or Pretimed =                 | ACTUATED                | = Actuated or Pre    |          | _                            |              | Red Left (sec)= |                  | 1.0         |        |
| Traf-Safe Delay Analysis for each hour? =         | YES                     | = Traf-Safe Delay    | ?        |                              | Common All-I | Red Thru (sec)= |                  | 2.0         | _      |
| Hourly Delay Analysis with Input of Delays ? =    | NO                      | = Input Delay Ana    | •        |                              |              |                 | st Time/Phase =  |             |        |
| Number of Phases (2,3, or 4) This Hour =          | 3                       | = Phases This Ho     |          |                              |              |                 | Unit Extension = |             |        |
| Approximate CYCLE Time(sec) =                     | 53                      | = TRAF-Safe Cyc      | le (sec) | Approach Delay (1-4)         |              |                 |                  | LT MIN IN   | IITIAĻ |
| Effective Through Green Approach 1 & 3 (sec) =    | 37                      | = Critical Lt+Th 1 ( |          | 13                           |              |                 | T Approach 1 =   |             |        |
| Effective Through Green Approach 2 & 4 (sec) =    | 10                      | = Critical Lt+Th 2   |          | 20                           |              |                 | T Approach 2 =   |             | Ω      |
| Intersection Control Delay (seconds/vehicle) =    | 14                      | = INTERSECTION I     | DELAY    | 13                           |              |                 | T Approach 3 =   |             |        |
|                                                   |                         |                      |          | 19                           |              | L               | T Approach 4 =   |             |        |
| Left and Right Turn Characteristics               | Protected LT Phase+Bay? |                      | Dual?    |                              |              |                 |                  | THRU MIN    |        |
| Left Turns from Approach # 1 =                    | Y                       | N                    | N        |                              |              |                 | U Approach 1 =   |             |        |
| Left Turns from Approach # 2 =                    | N                       | Y                    | N        |                              |              |                 | U Approach 2 =   |             |        |
| Left Turns from Approach # 3 =                    | Y                       | N                    | N        | _                            |              |                 | U Approach 3 =   |             | Ω      |
| Left Turns from Approach # 4 =                    | N                       | Y                    | N        |                              |              | THR             | U Approach 4 =   | 7.0         |        |
|                                                   | Protected LT (s)        | Sneakers (v/h)       |          |                              |              |                 |                  |             |        |
| Left Turns from Approach # 1 =                    | 10                      | 2                    |          |                              | l            |                 |                  |             | d      |
| Left Turns from Approach # 2 =                    | 0                       | 1                    |          | Timing Summary               | Am Peak      | Mid-Day         | Pm Peak          | Off-Pe      | ak =   |
| Left Turns from Approach # 3 =                    | 10                      | 2                    |          | Begin Time =                 | 6            | 9               | 16               | 20          |        |
| Left Turns from Approach # 4 =                    | 0                       | 1                    |          | End Time =                   | 9            | 16              | 20               | 6           |        |
|                                                   |                         |                      |          | Max Cycle Length =           | 53           | 51              | 53               | 51          |        |
|                                                   | Saturation Flow (v/h)   | Rt. Turn-on-Red      |          | Phases =                     | 3            | 3               | 3                | 3           |        |
| Left and Right Turns from Approach # 1 =          | 1905                    | 7                    |          | Progression Active =         | N            | N               | N                | N           |        |
| Left and Right Turns from Approach # 2 =          | 1905                    | 5                    |          | Progressive Cycle Length=    | 180          | 130             | 180              | 120         | Ò      |
| Left and Right Turns from Approach #3 =           | 1905                    | 7                    |          |                              |              |                 |                  |             |        |
| Left and Right Turns from Approach # 4 =          | 1905                    | 5                    |          | Appr.1 (NEMA 5) Left =       |              | 10              | 10               | 10          | i      |
|                                                   |                         |                      |          | Appr.2 (NEMA 7) Left =       |              | 0               | 0                | 0           | 9      |
| Additional Input by Approach                      | Approach # 1            | Approach # 2         |          | Appr.3 (NEMA 1) Left =       |              | 10              | 10               | 10          |        |
| TRAF-Safe/Hcm Arrival Type=                       | 1.4                     | 1.3                  |          | Appr.4 (NEMA 3) Left =       | 0            | 0               | 0                | 0           |        |
| Parking per Hour =                                | 0                       | 0                    |          |                              |              |                 |                  |             | Ţ      |
| Buses per Hour =                                  | 0                       | 0                    |          | Approach1 (NEMA 2) =         |              | 25              | 27               | 25          |        |
| Approach DownGrade % =                            | 0                       | 0                    |          | Approach3 (NEMA 6) =         |              | 25              | 27               | 25          |        |
| Pedestrians per this Hour =                       | 0                       | 0                    |          | Overlap Throughs and Lefts = | Υ            | Sp              | lit Phase 1&3? = | N           |        |
| Pedestrian Button + Phase ? =                     | N                       | N                    |          |                              |              |                 |                  |             |        |
| Additional Input by Approach                      | Approach # 3            | Approach # 4         |          | Approach 2 (NEMA 4) =        |              | 10              | 10               | 10          | _      |
| TRAF-Safe/Hcm Arrival Type=                       | 1.4                     | 1.4                  |          | Approach 4 (NEMA 8) =        |              | 10              | 10               | 10          |        |
| Parking per Hour =                                | 0                       | 0                    |          | Overlap Throughs and Lefts = | N            | Sp              | lit Phase 2&4? = | N           |        |
| Buses per Hour =                                  | 0                       | 0                    |          |                              |              |                 |                  |             |        |
| Approach DownGrade % =                            | 0                       | 0                    |          | Max LT Queues                |              | Approach 2 LT   | Approach 3 LT    | Approach    | 4 LT   |
| Pedestrians per this Hour =                       | 0                       | 0                    |          |                              | 48           | 0               | 46               | 0           |        |
| Pedestrian Button + Phase ? =                     | N                       | N                    |          |                              |              |                 |                  |             |        |

#### Internal Signal Timing - based on ICU Concepts

| CM 2000 Cycle & Split Selecto                                | r            |               |                      | 1.00             |               |            |            |              |           |        | Study Hour = | 18       |
|--------------------------------------------------------------|--------------|---------------|----------------------|------------------|---------------|------------|------------|--------------|-----------|--------|--------------|----------|
| Movement                                                     | Ĵ            | <b>-</b>      | 7                    | <b>₹</b>         | <b>—</b>      | t          | 1          | 1            | <b>^</b>  | L      | 1            | ل ا      |
|                                                              | EBL          | EBT           | EBR                  | ₩BL              | WBT           | WBR        | - NBL      | ■<br>NBT     | ■<br>NBR  | SBL    | SBT          | SBR      |
| 1                                                            | 1            |               |                      |                  |               |            |            |              | •         | •      |              | (A)      |
| Lanes                                                        |              | 2             | 0                    | 1                | 2             | 0          | 0          | 2            | 0         | 0      | 2            | 0        |
| SHARED LT Lane ?? (y=1/n=0)                                  | 0            |               |                      | 0                |               |            | 1          |              |           | 1      |              |          |
| Volume                                                       | 130          | 1126          | 70                   | 130              | 1126          | 70         | 50         | 232          | 50        | 50     | 232          | 50       |
| Peak Hour Factor                                             | 1            | 1.00          | 1.00                 | 1.00             | 1.00          | 1.00       | 1.00       | 1.00         | 1.00      | 1.00   | 1.00         | 1.00     |
| Pedestrians                                                  | 0            |               | 0                    | 0                |               | 0          | 0          |              | 0         | 0      |              | 0        |
| Ped Button (y=1/n=0)                                         | WLK          | 0             | FDNW                 | WLK              | 0             | FDNW       | WLK        | 0            | FDNW      | WLK    | 0            | FDNW     |
| Pedestrian Timing Required                                   | 0.0          | 0.0           | 12.0                 | 0.0              | 0.0           | 12.0       | 0.0        | 0.0          | 18.0      | 0.0    | 0.0          | 18.0     |
| Free Right (y=1/n=0)                                         |              |               | 0                    |                  |               | 0          |            |              | 0         |        |              | 0        |
| Ideal Flow                                                   | 1905         | 1900          | 1905                 | 1905             | 1900          | 1905       | 1905       | 1900         | 1905      | 1905   | 1900         | 1905     |
| Lost Time                                                    | 0            | 2             | 0                    | 0                | 2             | 0          | 0          | 2            | 0         | 0      | 2            | 0        |
| Phases & Corridor Cycle Length                               | Phases=      | 3.0           | Maximu               | m Cycle Length = | 300           |            |            |              |           |        | _            |          |
| Preliminary Cycle Estimate =                                 | 50           |               | SumCriticalVolumes = | 869              | 2-Phase =     | 50         | 3-Phase =  | 50           | 4-Phase = | 60     |              |          |
|                                                              |              |               |                      |                  |               |            |            |              |           |        |              |          |
|                                                              |              |               |                      |                  |               |            |            |              |           |        |              | $\simeq$ |
| Adjusted Volume                                              | 130          | 1126          | 70                   | 130              | 1126          | 70         | 50         | 232          | 50        | 50     | 232          | 50       |
| Volume Combined                                              | 130          | 1196          | 0                    | 130              | 1196          | 0          | 0          | 332          | 0         | 0      | 332          | 0 (1     |
| Volume Separate Left or Right  Lane Utilization Factor       | 130<br>1,000 | 1196<br>0.952 | 1.000                | 130<br>1.000     | 1196<br>0.952 | 0<br>1.000 | 0<br>1,000 | 282<br>0.952 | 1,000     | 1.000  | 282<br>0.952 | 1,000    |
| Turning Factor Adjust                                        | 0.95         | 0.99          | 0.85                 | 0.95             | 0.99          | 0.85       | 0.95       | 0.97         | 0.85      | 0.95   | 0.932        | 0.85     |
| Saturated Flow Combined                                      | 1810         | 3586          | 0                    | 1810             | 3586          | 0          | 0          | 3509         | 0         | 0      | 3509         | 0        |
| Saturated Flow Separate                                      | 1810         | 3586          | 0                    | 1810             | 3586          | 0          | 1810       | 3521         | 0         | 1810   | 3521         | 0        |
| minimum initial                                              | 7.0          | 12.0          | 0.00                 | 7.0              | 12.0          | 0.00       | 0.0        | 7.0          | 0.00      | 0.0    | 7.0          | 0.00     |
| minimum split                                                | 8.0          | 13.0          | 0.00                 | 8.0              | 13.0          | 0.00       | 1.0        | 8.0          | 0.00      | 1.0    | 8.0          | 0.00     |
| Yellow time                                                  | 3.00         | 4.50          | 0.00                 | 3.00             | 4.50          | 0.00       | 3.00       | 3.50         | 0.00      | 3.00   | 3.50         | 0.00     |
| All-red                                                      | 1.00         | 2.00          | 0.00                 | 1.00             | 2.00          | 0.00       | 1.00       | 2.00         | 0.00      | 1.00   | 2.00         | 0.00     |
| Extension                                                    | 1.00         | 1.00          | 1.00                 | 1.00             | 1.00          | 1.00       | 1.00       | 1.00         | 1.00      | 1.00   | 1.00         | 1.00     |
| Recall                                                       | None         | Min           | None                 | None             | Min           | None       | None       | None         | None      | None   | None         | None     |
| Minimum Green                                                | 7            | 13            | 0                    | 7                | 13            | 0          | 0          | 8            | 0         | 0      | 8            | 0        |
|                                                              |              | 0.0           | 0.0                  | 0.0              | 0.0           | 0.0        | 0.0        | 0.0          | 0.0       | 0.0    | 0.0          | 0.0      |
| Ped/Bike Interference Time                                   | 0.0          | 0.0           | 0.0                  | 0.0              | 0.0           | 0.0        | 0.0        | 0.0          | 0.0       | 0.0    | 0.0          | 0.0      |
| Ped/Bike Interference Time  Hcm LT Adjust Ped/Bike Frequence | 1            | 0.0           | 0.0%                 | 100.0%           | 0.0           | 0.0%       | 100.0%     | 0.0          | 0.0%      | 100.0% | 0.0          | 0.0%     |

#### With Automatic NCHRP/Practical Cycle Length



# with Protected, Permitted or Split phase automatically selected for each hour of the day

| PROTECTED                              | EBL  | EBT          | EBR             | WBL  | WBT          | WBR  | NBL  | NBT        | NBR             | SBL  | SBT        | SBR C    |
|----------------------------------------|------|--------------|-----------------|------|--------------|------|------|------------|-----------------|------|------------|----------|
| Protected Option Allowed (1=Yes,0=No   | )    | 1            |                 |      | 1            |      |      | 0          |                 |      | 0          | -        |
| Reference Time                         | 3.6  | 16.7         | 0.0             | 3.6  | 16.7         | 0.0  | NA   | 0.0        | 0.0             | NA   | 0.0        | 0.0      |
| Actuated effetive green                | 10.0 | 23.2         | 0.0             | 10.0 | 23.2         | 0.0  | 3.0  | 3.5        | 0.0             | 3.0  | 3.5        | 0.0      |
| Adjusted to Hour Act.Eff.Green         | 10.0 | 26.8         | 0.00            | 10.0 | 26.8         | 0.00 | 3.0  | 3.5        | 0.00            | 3.0  | 3.5        | 0.00     |
| Hourly actuated g/c                    | 0.20 | 0.54         | 0.00            | 0.20 | 0.54         | 0.00 | 0.06 | 0.07       | 0.00            | 0.06 | 0.07       | 0.00     |
|                                        |      |              |                 |      |              |      |      |            |                 |      |            | 2        |
|                                        |      | i            |                 | ı    | 1            | i    |      | 1          | :               |      | ı          | 2        |
| PERMITTED                              | EBL  | EBT          | EBR             | WBL  | WBT          | WBR  | NBL  | NBT        | NBR             | SBL  | SBT        | SBR      |
| Permitted Option Allowed (1=Yes, 0=N   | 0)   | 0            | Permissive 1&3= | NO   | 0            |      |      | 1          | Permissive 2&4= | YES  | 1          | <u> </u> |
| Adjusted Saturation A                  |      | 3586         |                 |      | 3586         |      |      | 2348       |                 |      | 2348       | 2        |
| Reference Time A                       |      | NA           |                 |      | NA           |      |      | 6.0        |                 |      | 6.0        |          |
| Adjusted Saturation B                  |      | 3586         |                 |      | 3586         |      |      | 1761       |                 |      | 1761       | (        |
| Reference Time B                       |      | NA           |                 |      | NA           |      |      | NA         |                 |      | NA         | (        |
| Reference Time Lefts                   | 11.6 |              | NA              | 11.6 |              | NA   | 0.0  |            | 0.0             | 0.0  |            | 0.0      |
| Reference Time                         |      | NA           |                 |      | NA           |      |      | 6.0        |                 |      | 6.0        | ē        |
| Adjusted Reference Time                |      | 0.0          |                 |      | 0.0          |      |      | 10.0       |                 |      | 10.0       |          |
| Actuated effetive green                | 11.6 | 11.6         | NA              | 11.6 | 11.6         | NA   | 0.0  | 10.0       | 0.00            | 0.0  | 10.0       | 0.00     |
| Adjusted to Hour Act.Eff.Green         | 11.6 | 13.4         | 0.00            | 11.6 | 13.4         | 0.00 | 0.0  | 10.0       | 0.00            | 0.0  | 10.0       | 0.00     |
| Hourly actuated g/c                    | 0.23 | 0.27         | 0.00            | 0.23 | 0.27         | 0.00 | 0.00 | 0.20       | 0.00            | 0.00 | 0.20       | 0.00     |
|                                        |      |              |                 |      |              |      |      |            |                 |      |            |          |
|                                        |      |              |                 |      |              |      |      |            |                 |      |            | 1        |
| SPLIT                                  | EBL  | EBT          | EBR             | WBL  | WBT          | WBR  | NBL  | NBT        | NBR             | SBL  | SBT        | SBR      |
| Split Timing                           |      |              | SPLIT APP 1&3=  | NO   |              |      |      |            | SPLIT APP 2&4=  | NO   |            | g        |
| Ref Time Combined Ref Time By Movement | 3.6  | 16.7<br>16.7 |                 | 3.6  | 16.7<br>16.7 |      | 0.0  | 4.7<br>4.0 |                 | 0.0  | 4.7<br>4.0 | Q        |
| Reference Time                         | 3.0  | 16.7         |                 | 3.0  | 16.7         |      | U.U  | 4.0        |                 | U.U  | 4.0        | l l      |
| Adjusted Reference Time                | 18.7 | 18.7         |                 | 18.7 | 18.7         |      | 10.0 | 10.0       |                 | 10.0 | 10.0       |          |
| Actuated effetive green                | 3.6  | 18.7         | 18.7            | 3.6  | 18.7         | 18.7 | 10.0 | 10.0       | 10.0            | 10.0 | 10.0       | 10.0     |
| Adjusted to Hour Act.Eff.Green         | 3.6  | 21.6         | 0.0             | 3.6  | 21.6         | 0.0  | 10.0 | 10.0       | 0.0             | 10.0 | 10.0       | 0.0      |

Hourly actuated q/c

#### Check Peak Hour Signal Output

|                          |               |                |              |               | • • •          |              |              | ,,,,           |              |               |                 |               |
|--------------------------|---------------|----------------|--------------|---------------|----------------|--------------|--------------|----------------|--------------|---------------|-----------------|---------------|
| Hour= <b>18</b>          |               |                |              |               |                |              |              |                |              |               | 9/28/04 9:52 AM |               |
| Controller Type=         | /             | HISTORIC SULL' | Y /          |               | URLEY HALL R   | D.           |              | HISTORIC SULLY |              |               | URLEY HALL RI   | D.            |
| ACTUATED                 | Approach 1 L1 | Approach 1 Thr | Approach 1 R | Approach 2 LT | Approach 2 Thr | Approach 2 R | pproach 3 LT | Approach 3 Thr | Approach 3 R | Approach 4 LT | Approach 4 Thr  | Approach 4 RT |
| LT Turn Type             | Prot/Perm     |                |              | Prot/Perm     |                |              | Prot/Perm    |                |              | Prot/Perm     |                 |               |
| LT Sneakers/Hr           | 54            |                |              | 54            |                |              | 161          |                |              | 65            |                 |               |
| Right-on-Red             |               |                | 2            |               |                | 54           |              |                |              |               |                 |               |
| Ideal Flow               | 1900          | 3000           | 1900         | 1900          | 3800           | 1900         | 1900         | 3800           | 1900         | 1900          | 3800            | 1900          |
| Lane Width Adjust        | 1.00          | 1.00           | 1.00         | 1.00          | 1.00           | 1.00         | 1.00         | 1.00           | 1.00         | 1.00          | 1.00            | 1.00          |
| Heavy Vehicle %          | 0%            | 0%             | 0%           | 0%            | 0%             | 0%           | 0%           | 0%             | 0%           | 0%            | 0%              | 0%            |
| Heavy Vehicle Adjust     | 1.00          | 1.00           | 1.00         | 1.00          | 1.00           | 1.00         | 1.00         | 1.00           | 1.00         | 1.00          | 1.00            | 1.00          |
| Grade adjust             | 1.00          | 1.00           | 1.00         | 1.00          | 1.00           | 1.00         | 1.00         | 1.00           | 1.00         | 1.00          | 1.00            | 1.00          |
| Parking Adjust           | 1.00          | 1.00           | 1.00         | 1.00          | 1.00           | 1.00         | 1.00         | 1.00           | 1.00         | 1.00          | 1.00            | 1.00          |
| Bus Blockage             | 1.00          | 1.00           | 1.00         | 1.00          | 1.00           | 1.00         | 1.00         | 1.00           | 1.00         | 1.00          | 1.00            | 1.00          |
| Area Type                | 1.00          | 1.00           | 1.00         | 1.00          | 1.00           | 1.00         | 1.00         | 1.00           | 1.00         | 1.00          | 1.00            | 1.00          |
| Lane Utilization         | 1.00          | 0.95           | 1.00         | 1.00          | 0.95           | 1.00         | 1.00         | 0.95           | 1.00         | 1.00          | 0.95            | 1.00          |
| Fit                      | 0.95          |                |              | 0.95          |                |              | 0.59         |                |              | 0.29          |                 |               |
| Frt                      |               |                | 1.00         |               |                | 0.85         |              |                | 0.98         |               |                 | 1.00          |
| Ped/Bike Adjust Lt&Rt    | 1.00          |                | 1.00         | 1.00          |                | 1.00         | 1.00         |                | 1.00         | 1.00          |                 | 1.00          |
| Sat. Flow Lt Perm        | 0             |                |              | 0             |                |              | 1069         |                |              | 526           |                 |               |
| Sat. Flow Lt Prot        | 0             |                |              | 0             |                |              | 1810         |                |              | 1810          |                 |               |
| Sat Flow Thru            |               | 3607           |              |               | 3618           |              |              | 3560           |              |               | 3617            |               |
| Sat Flow Rt              |               |                | 0            |               |                | 1619         |              |                | 0            |               |                 | 0             |
| Lane Group Flow (vph)    | 0             | 199            | 0            | 1_            | 19             | 497          | 576          | 131            | 0            | 35            | 9               | 0             |
|                          |               |                |              |               |                |              |              |                |              |               |                 |               |
| Walk/Bike Calls per Hour |               |                | 0            |               |                | 0            |              |                | 0            |               |                 | 0             |
|                          | WLK           | Total Time     | FDNW         | WLK           | Total Time     | FDNW         | WLK          | Total Time     | FDNW         | WLK           | Total Time      | FDNW          |
| Pedestrian Timing (s)    | 0.0           | 0.0            | 21.0         | 0.0           | 0.0            | 18.0         | 0.0          | 0.0            | 21.0         | 0.0           | 0.0             | 18.0          |
| minimum initial          | 7.0           | 12.0           | 0.0          | 7.0           | 7.0            | 7.0          | 7.0          | 12.0           | 0.0          | 7.0           | 7.0             | 7.0           |
| minimum split            | 8.0           | 13.0           | 0.0          | 8.0           | 8.0            | 8.0          | 8.0          | 13.0           | 0.0          | 8.0           | 8.0             | 0.0           |
| Yellow time              | 3.0           | 3.5            | 0.0          | 3.0           | 3.5            | 3.5          | 3.0          | 3.5            | 0.0          | 3.0           | 3.5             | 0.0           |
| All-red                  | 1.0           | 1.0            | 0.0          | 1.0           | 1.0            | 1.0          | 1.0          | 1.0            | 0.0          | 1.0           | 1.0             | 0.0           |
| Extension                | 1.0           | 1.0            | 1.0          | 1.0           | 1.0            | 1.0          | 1.0          | 1.0            | 1.0          | 1.0           | 1.0             | 1.0           |
| Recall                   | None          | Min            | None         | None          | None           | None         | None         | Min            | None         | None          | None            | None          |
| Minimum Green            | 7.0           | 13.0           | 0.0          | 7.0           | 8.0            | 7.0          | 7.0          | 13.0           | 0.0          | 7.0           | 8.0             | 7.0           |
| Ped/Bike Interference(s) |               | 0.0            | 0.0          |               | 0.0            | 0.0          |              | 0.0            | 0.0          |               | 0.0             | 0.0           |
| Ped/Bike Frequency       |               | 0.00           | 0.00         |               | 0.00           | 0.00         |              | 0.00           | 0.00         |               | 0.00            | 0.00          |
| Actuated Green (sec)     | 9.4           | 16.2           | 0.0          | 9.4           | 12.6           | 19.1         | 20.7         | 16.2           | 0.0          | 9.4           | 12.6            | 12.6          |
| Actuated Green (g/c)     | 14%           | 24%            | 0%           | 14%           | 19%            | 29%          | 31%          | 24%            | 0%           | 14%           | 19%             | 19%           |
|                          |               | 074            | 4000         |               | 000            | 4000         |              |                | 4000         | ***           |                 | 4000          |
| Lane group capacity      | 0.00          | 874<br>0.06    | 1600<br>0.00 | 54<br>0.00    | 683<br>0.01    | 1603<br>0.31 | 980<br>0.32  | 863            | 1600<br>0.00 | 418<br>0.02   | 683<br>0.00     | 1600          |
| v/s Ratio<br>V/C Ratio   | 0.00          | 0.06           | 0.00         | 0.00          | 0.01           | 0.31         | 0.32         | 0.04<br>0.15   | 0.00         | 0.02          | 0.00            | 0.00          |
| Uniform Delay D1         | 0.00          | 20.3           | 0.00         | 0.02          | 22.1           | 0.0          | 4.3          | 19.9           | 0.00         | 9.7           | 22.1            | 0.00          |
| Progression factor       | 1.00          | 1.00           | 1.00         | 1.00          | 1.00           | 1.00         | 1.00         | 1.00           | 1.00         | 1.00          | 1.00            | 1.00          |
| Incremental delay D2     | 0.0           | 0.6            | 0.0          | 0.0           | 0.1            | 0.5          | 2.6          | 0.4            | 0.0          | 0.4           | 0.0             | 0.0           |
| Delay (sec)              | 0.0           | 20.9           | 0.0          | 0.0           | 22.2           | 0.5          | 6.9          | 20.3           | 0.0          | 10.0          | 22.1            | 0.0           |
| Level of Service         | A             | С              |              | А             | С              |              | А            | С              |              | В             | С               |               |
| Approach Delay (sec)     |               | 21             |              |               | 21             |              |              | 8              |              |               | 12              |               |
| Approach LOS             |               | С              |              |               | С              |              |              | A              |              |               | В               |               |
|                          |               |                |              | 1             |                |              |              |                |              |               |                 |               |
| HCM Control Delay        | 15            | Inters         | ection LOS = |               |                |              |              |                |              |               |                 |               |
| Cycle length Used        | 67            |                | B HCM LOS.   |               | l              |              |              |                |              |               |                 |               |

# Check Hourly Signal Output Throughout Day Cycle, Phase (thru+turn) & Splits

| Daily Timi    | ng Summary    |             |             | MAJOR ROAD  | WAY         | MINOR RO      | ADWAY       |             | COMME       | NTS         | 9/3/04 12:03 PM | 18    |
|---------------|---------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-----------------|-------|
|               | 1 & 3 Phasing | App. 1 Left | App. 1 Thru | App. 3 Left | App. 3 Thru | 2 & 4 Phasing | App. 2 Left | App. 2 Thru | App. 4 Left | App. 4 Thru | Cycle           |       |
| AM            |               |             |             |             |             |               |             |             |             |             |                 | DELAY |
| 5-6Am Hour 6  | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 10    |
| 6-7 Hour 7    | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 11    |
| 7-8 Hour 8    | Prot          | 10          | 27          | 10          | 27          | LtPerm        | 0           | 10          | 0           | 10          | 53              | 14    |
| 8-9 Hour 9    | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 12    |
|               |               |             |             |             |             |               |             |             |             |             |                 |       |
| Mid-Day       |               |             |             |             |             |               |             |             |             |             |                 |       |
| 9-10 Hour 10  | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 11    |
| 10-11 Hour 11 | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 10    |
| 11-12 Hour 12 | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 11    |
| 12-1 Hour 13  | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 12    |
| 1-2 Hour 14   | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 12    |
| 2-3 Hour 15   | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 12    |
| 3-4 Hour 16   | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 12    |
|               |               |             |             |             |             |               |             |             |             |             |                 |       |
| PM            |               |             |             |             |             |               |             |             |             |             |                 |       |
| 4-5 Hour 17   | Prot          | 10          | 26          | 10          | 26          | LtPerm        | 0           | 10          | 0           | 10          | 52              | 13    |
| 5-6 Hour 18   | Prot          | 10          | 27          | 10          | 27          | LtPerm        | 0           | 10          | 0           | 10          | 53              | 14    |
| 6-7 Hour 19   | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 12    |
|               |               |             |             |             |             |               |             |             |             |             |                 |       |
| Off-Peak      |               |             |             |             |             |               |             |             |             |             |                 |       |
| 7-8 Hour 20   | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 11    |
| 8-9 Hour 21   | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 10    |
| 9-10 Hour 22  | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 10    |
| 10-11 Hour 23 | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 9     |
| 11-12 Hour 24 | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 9     |
| 12-1 Hour 1   | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 9     |
| 1-2 Hour 2    | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 9     |
| 2-3 Hour 3    | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 9     |
| 3-4 Hour 4    | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 9     |
| 4-5 Hour 5    | Prot          | 10          | 25          | 10          | 25          | LtPerm        | 0           | 10          | 0           | 10          | 51              | 9     |

### Check Hourly /Annual Safety Output

|            |                |            | 1041          | • • • • • • • • • • • • • • • • • • • • |          |             |                 |               |                |                  |             |
|------------|----------------|------------|---------------|-----------------------------------------|----------|-------------|-----------------|---------------|----------------|------------------|-------------|
| Hourly Sum | mary of Anni   | ual Data   |               |                                         |          |             |                 | HISTORIC SULL | Υ              | 8                | TURLEY HA   |
|            | Estimated      | Delay/Year |               |                                         | Annı     | ual Vehicle | -Only Eve       | nts           |                |                  |             |
|            | Major Road     | Minor Road |               |                                         |          |             |                 |               |                |                  |             |
|            | Appr. 183      | Appr. 284  |               | Forecast Accident Events Forecast       |          |             |                 |               |                |                  |             |
| HOUR       | Hours/Year     | Hours/Year | Total/Yr      | WITH-IN                                 | Rear-End | Sideswipe   | Fixed Obj/Sir   | HOUR          | TOTAL/Yr       | Critical/5-Yrs   | HOUR        |
| 1          | 41             | 42         | 0.00          | 0.00                                    | 0.00     | 0.00        | 0.00            | 1             | 0.00           | 0.00             | 1           |
| 2          | 23             | 24         | 0.00          | 0.00                                    | 0.00     | 0.00        | 0.00            | 2             | 0.00           | 0.00             | 2           |
| 3          | 15             | 15         | 0.00          | 0.00                                    | 0.00     | 0.00        | 0.00            | 3             | 0.00           | 0.00             | 3           |
| 4          | 19             | 19         | 0.00          | 0.00                                    | 0.00     | 0.00        | 0.00            | 4             | 0.00           | 0.00             | 4           |
| 5          | 34             | 34         | 0.00          | 0.00                                    | 0.00     | 0.00        | 0.00            | 5             | 0.00           | 0.00             | 5           |
| 6          | 137            | 140        | 0.02          | 0.01                                    | 0.00     | 0.00        | 0.02            | 6             | 0.00           | 0.00             | 6           |
| 7          | 387            | 396        | 0.10          | 0.05                                    | 0.01     | 0.00        | 0.04            | 7             | 0.02           | 0.00             | 7 🤦         |
| 8          | 987            | 1,010      | 0.26          | 0.14                                    | 0.06     | 0.00        | 0.06            | 8             | 0.08           | 0.00             | 8           |
| 9          | 787            | 805        | 0.15          | 0.08                                    | 0.02     | 0.00        | 0.05            | 9             | 0.04           | 0.00             | 9           |
| 10         | 533            | 545        | 0.09          | 0.04                                    | 0.01     | 0.00        | 0.03            | 10            | 0.02           | 0.00             | 10          |
| 11         | 389            | 399        | 0.05          | 0.03                                    | 0.00     | 0.00        | 0.03            | 11            | 0.01           | 0.00             | 11          |
| 12         | 456            | 466        | 0.06          | 0.03                                    | 0.00     | 0.00        | 0.03            | 12            | 0.01           | 0.00             | 12          |
| 13         | 693            | 709        | 0.11          | 0.06                                    | 0.01     | 0.00        | 0.04            | 13            | 0.03           | 0.00             | 13          |
| 14         | 688            | 705        | 0.13          | 0.07                                    | 0.01     | 0.00        | 0.05            | 14            | 0.03           | 0.00             | 14          |
| 15         | 615            | 630        | 0.13          | 0.08                                    | 0.01     | 0.00        | 0.05            | 15            | 0.03           | 0.00             | 15          |
| 16         | 800            | 819        | 0.19          | 0.12                                    | 0.02     | 0.00        | 0.06            | 16            | 0.05           | 0.00             | 16          |
| 17         | 1,106          | 1,132      | 0.28          | 0.17                                    | 0.04     | 0.00        | 0.07            | 17            | 0.08           | 0.00             | 17 (        |
| 18         | 2,083          | 2,132      | 0.41          | 0.25                                    | 0.08     | 0.00        | 0.08            | 18            | 0.13           | 0.01             | 18          |
| 19         | 926            | 947        | 0.23          | 0.14                                    | 0.03     | 0.00        | 0.06            | 19            | 0.07           | 0.00             | 19          |
| 20         | 435            | 446        | 0.10          | 0.05                                    | 0.01     | 0.00        | 0.04            | 20            | 0.02           | 0.00             | 20          |
| 21         | 266            | 272        | 0.05          | 0.02                                    | 0.00     | 0.00        | 0.02            | 21            | 0.01           | 0.00             | 21          |
| 22         | 216            | 221        | 0.03          | 0.01                                    | 0.00     | 0.00        | 0.02            | 22            | 0.01           | 0.00             | 22          |
| 23         | 139            | 142        | 0.02          | 0.01                                    | 0.00     | 0.00        | 0.01            | 23            | 0.00           | 0.00             | 23          |
| 24         | 77             | 70         | 0.01          | 0.00                                    | 0.00     | 0.00        | 0.01            | 24            | 0.00           | 0.00             | 24          |
| TOTAL/Yr   | 11,851         | 12,130     | 2.4           | 1.37                                    | 0.32     | 0.00        | 0.76            |               | 0.65           | 0.03             |             |
|            | Delay/Year     | Delay/Year | Accidents/Yr  | WITH-IN                                 | Rear-End | Sideswipe   | Fixed Obj/Sir   |               | Injury Acc./Yr | Critical/5-Yrs   |             |
|            |                |            |               |                                         | iggl)    |             |                 |               | Fatal/5-Yrs    |                  |             |
|            |                |            |               |                                         |          |             |                 |               | $\overline{}$  | Note: The rate-  |             |
|            |                |            |               |                                         |          |             |                 |               |                |                  |             |
|            |                |            | lacro) Accide |                                         | nate     |             | TRAF Safe       |               | is of Service  |                  |             |
| MDOT-I     | Round Acc/Yr = | 2.5        |               | an Std.Dev.=                            |          | S           | afety Los 'A' < | 0.43          |                | ety LOS Criter   |             |
|            |                |            | Small Urb     | an Std.Dev.=                            |          | 1 1         | afety Los 'B' < | 0.87          | 0.65           | Traf-Safe Injury | Acc.+Peds/\ |

1.30

1.74

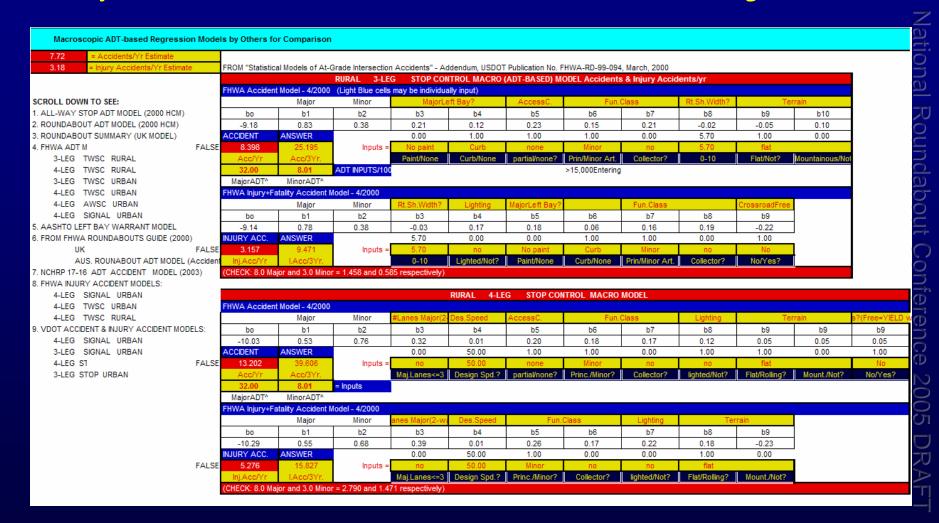
2.17

PLANNING LIMIT OF ACCEPTABLE RISK
DESIGN LIMIT OF ACCEPTABLE RISK

POTENTIALLY HAZARDOUS DESIGN

MDOT-Roundabout Inj-Acc./Yr =

UK Roundabout Inj-Acc./Yr=


Alternative ADT-Based Injury Accidents/Yr Estimate

0.6

Large Urban Std.Dev.=

Small Urban Std.Dev.=

#### Compare to FHWA & British Macro-Safety Models



Recognize that: Regression Accident Model Accuracy
< 35 % Accurate

#### **DELAY RESULTS ??**

|               | HCS-based Delay | Conflict Software Delay $\geq$                        |
|---------------|-----------------|-------------------------------------------------------|
| TWSC          |                 | atic                                                  |
| Am            | 8.1             | Connict Software Delay National 6.3                   |
| Pm            | 14.9            |                                                       |
| <u>AWSC</u>   |                 | Roundabout  F                                         |
| Am/Pm LOS     | В               |                                                       |
| <u>Signal</u> |                 | Conference 11.9 15.0                                  |
| Am            | 8.9             | 11.9 Pro                                              |
| Pm            | 8.8             |                                                       |
| Roundabout    |                 | 2005 i                                                |
| Am            | 9.5             | <b>20.6</b> <sup>1</sup>                              |
| Pm            | 10.3            | 33.4 1  1. Very conservative lower bound critical gap |

Within the 30% error margin when comparing HCS results to actual field delay

#### SAFETY RESULTS ??

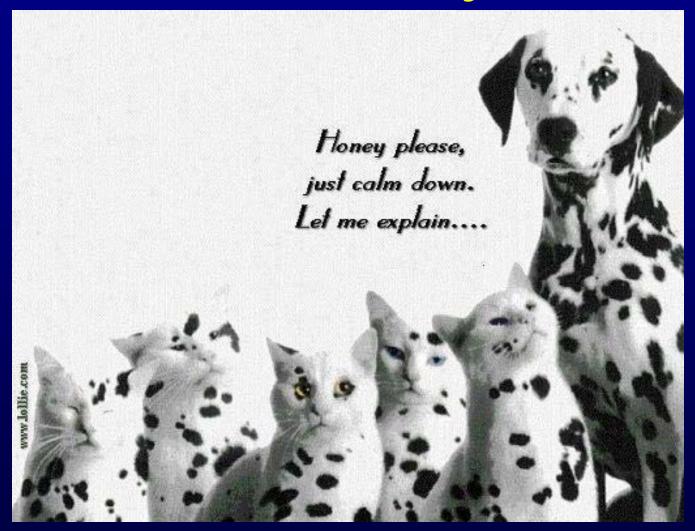
#### Accidents - Injuries - Lifetime Risk

|                                           | <b>TWSC</b> | AWSC | <u>Signal</u> | Roundabou |
|-------------------------------------------|-------------|------|---------------|-----------|
| <u>Accidents</u>                          | 0.5         | 1.5  | 1.4           | 2.4       |
| Injury Acc.                               | 0.12        | 0.15 | 0.42          | 0.65      |
| Safety LOS                                | B           | B    | A             | B         |
| Performance Index<br>(Safety+Delay Value) | <i>58</i>   | 741  | 94            | 133       |

#### Conclusions?

- 1. AWSC Unacceptable delay = LOS "F"
- 2. Signal may not warrant (15,000 ADT) annual cost
- 3. TWSC and Roundabout Safety LOS = B = OK
- 4. Thus developer may select TWSC or Roundabout

(Both are acceptable and only have slight differences)


www.Traf-Safe.com

#### If Had Walk/Bike Mode

## Injury Accident Estimation can be included

| WALK/BIKE MODULE                                 | COMMENTS      | 9/3/04 12:03 PM |
|--------------------------------------------------|---------------|-----------------|
|                                                  | MAJOR ROADWAY | MINOR ROADWAY   |
| Walk/Bike Mode Total Injury Events/5-Yrs =       | 0.00          |                 |
| Walk/Bike Mode Critical Injury Events/5-Yrs =    | 0.00          |                 |
|                                                  |               |                 |
| APPROACH 1 & 2                                   | Major # 1     | Minor # 2       |
| Total WALK/BIKE Distance on this Approach (ft) = | 72            | 48              |
| Total WALK/BIKE Mode per Day (this approach) =   | 0             | 0               |
| Percent Young Crossing (age 2-14)/Day =          | 0             | 0               |
| Percent Typical Crossing (age 15-55)/ Day =      | 95            | 95              |
| Percent Elder Crossing (ages > 55)/ Day =        | 5             | 5               |
| Percent Crossing Handicap Peds/ Day =            | 0             | 0               |
| Effective Total Crossings Walk+Bike/Day =        | 0             | 0               |
| AADT This Approach =                             | 30,790        | 9,218           |
| WALK/BIKE Injury Events/5-Yrs this approach =    | 0.000         | 0.000           |
| Percent Critical Injuries =                      | 43%           | 24%             |
| Estimated Critical Events/5-Yrs =                | 0.000         | 0.000           |
|                                                  |               |                 |
| APPROACH 3 & 4                                   | Major # 3     | Minor # 4       |
| Total WALK/BIKE Distance on this Approach (ft) = | 72            | 48              |
| Total WALK/BIKE Mode per Day (this approach) =   | 0             | 0               |
| Percent Young Crossing (age 2-14)/Day =          | 0             | 0               |
| Percent Typical Crossing (age 15-55)/ Day =      | 95            | 95              |
| Percent Elder Crossing (ages > 55)/ Day =        | 5             | 5               |
| Percent Crossing Handicap Peds/ Day =            | 0             | 0               |
| Effective Total Crossings Walk+Bike/Day =        | 0             | 0               |
| AADT This Approach =                             | 30,790        | 9,218           |
| WALK/BIKE Injury Events/5-Yrs this approach =    | 0.000         | 0.000           |
| Percent Critical Injuries =                      | 43%           | 24%             |
| Estimated Critical Events/5-Yrs =                | 0.000         | 0.000           |

### But let's remember....it's just software



Only <u>qualified engineering judgment</u> can define what's safe & what's not....but software can help defend your decision and explain why.