Modern Roundabouts

An Informational Presentation Prepared For:

Transportation Research Board Roundabout Conference Vail, CO May 2005

'Roundabouts and Live-ability'

3 Case Studies

BY : Mark T. Johnson, P.E. & Bill Hange, P.E. City of Loveland, Traffic Engineer

Presentation Outline

- Transportation Systems And 'Live-ability (Macro to Micro)
 - Transportation Systems are Foundational (macro):
 - Development Patterns & Land Use
 - Effect Scale of and Mass of our Roadways
 - Creates the Fabric that 'we' interact with daily

Presentation Outline

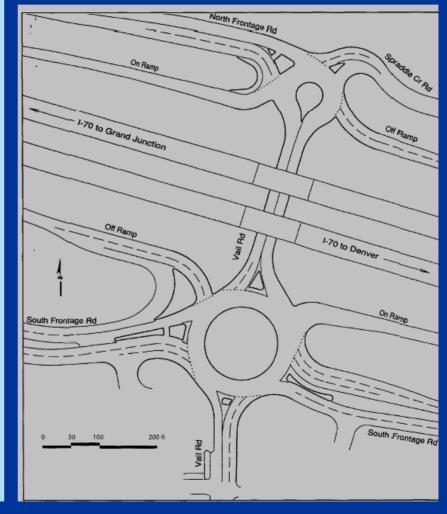
- Transportation Systems And 'Live-ability (Macro to Micro)
 - Transportation Systems Must Balance Competing Needs:
 - Capacity (for all modes)
 - Safety (for all modes)
 - Costs (monetary and user costs)
 - ROW Impacts
 - Air Quality
 - Circulation and Business Access Needs
 - We will Look at Projects that Utilized High Capacity Roundabouts to Achieve a Balance

NJ - Rotary Rt. 206/202 Summerville, NJ

Vail Colorado Vail, CO - 1988

•Congested Interchange

•\$15M Conventional Interchange Alternative to achieve Improvement



Video Courtesy of: Ourston Roundabout Engineering

Vail Colorado

Main Vail - Diamond Interchange \$2.5M (8,200 vph)

Graphic Courtesy of: Ourston Roundabout Engineering

Community Acceptance Vail, CO Constructed Oct. 1995

The Vail Trail - January 5, 1996

— Editorial —

Shocker: Maybe the roundabout isn't so bad after all

We at the Trail have had a lot of fun in the past year taking stabs at Vail's roundabout, projecting all manner of doomsday scenarios for the project...

...Our primary concern was the combination of slick roads, rental cars and an unfamiliar driving concept. However, people seem to have figured out the contraption. What's more, the gridlock appears to be gone.

•Voted Best Public Works Project 5 Years Straight

Video Courtesy of: Ourston Roundabout Engineering

Community Acceptance

West Vail Diamond Interchange Design Capacity: 3,700+3,300 =7,000 vph

Video Courtesy of: Ourston Roundabout Engineering

Urban Multi-Lane Roundabout:

Pedestrians

4,500- 5,000 VPH

Roundabout Avon, CO

<u>Signal</u> Loveland, CO

Pedestrians

4,500- 5,000 VPH

Roundabout Avon, CO

<u>Signal</u> Loveland, CO

• Missing Sidewalk / No Bike Lanes

Existing Conditions • Peak Hour Congestion and Delay

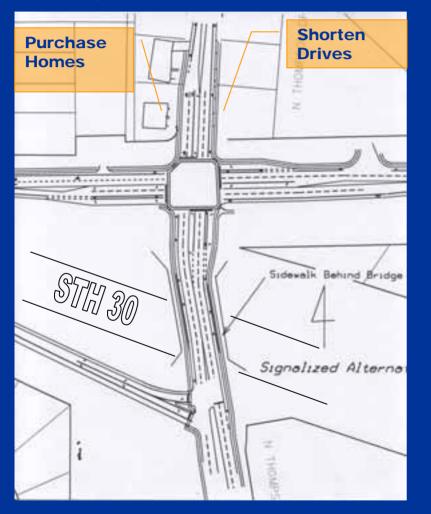
- 10 crashes per yearAve 8 serious injuries/yr
- •1.2 crashes per MEV
- •~80% Injury Crashes

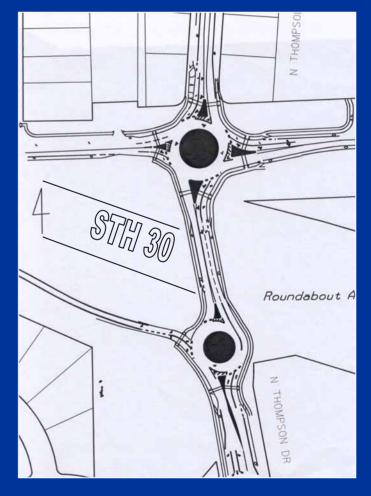
Existing Conditions • Peak Hour Congestion and Delay

- 10 crashes per yearAve 8 serious injuries/yr
- •1.2 crashes per MEV
- •~80% Injury Crashes

Existing Conditions • Peak Hour Congestion and Delay

- 10 crashes per yearAve 8 serious injuries/yr
- •1.2 crashes per MEV
- •~80% Injury Crashes





STH 30/Thompson Drive -Madison

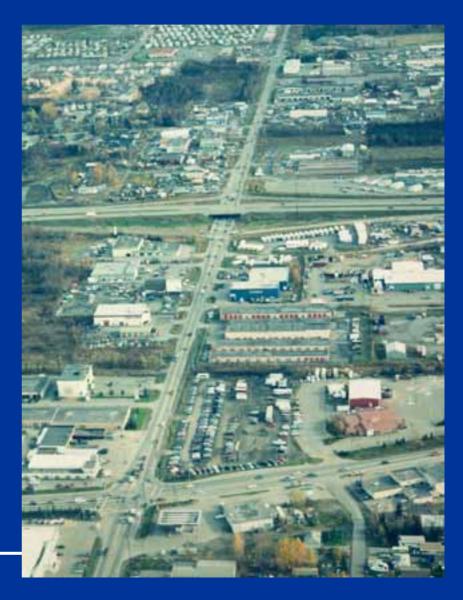
Signal Alternative

Roundabout

Thompson Drive

Thompson Drive

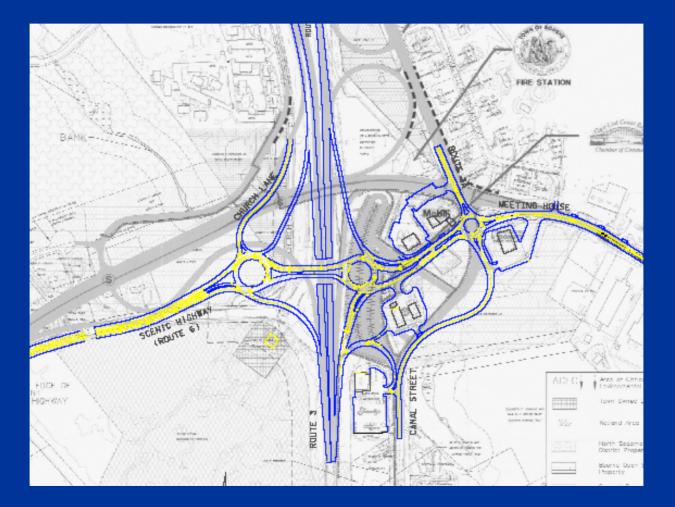
Thompson Drive



Anchorage AK

Anchorage AK Diamond Interchange

Anchorage AK Diamond Interchange



Mt Horeb WI

Mount Horeb, WI

Mount Horeb, WI

Mount Horeb, Wisconsin Pedestrian Comparison

Mount Horeb, Wisconsin Pedestrian Comparison

STH 78/92 Mount Horeb, Wisconsin 2,000 VPH, 2,800 design

Zero Crashes in 10 month

Flared Two lane entry

Business Access

Mount Horeb, Wisconsin

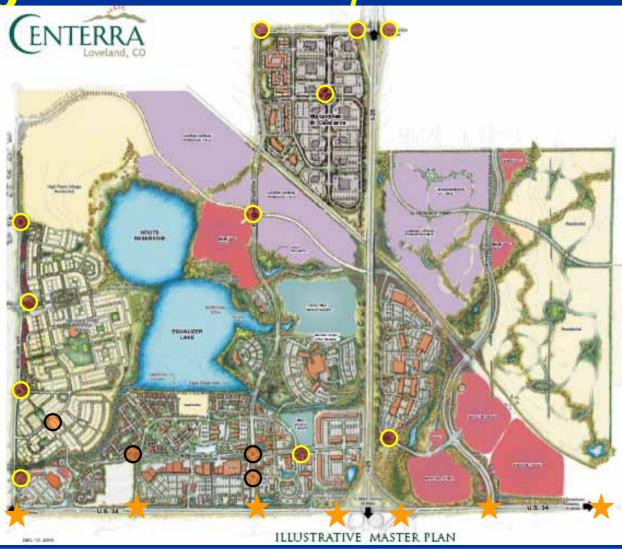
Loveland, CO

- 63,000 population high growth ~13,000 since 2000 census
- First Roundabouts 1997

- Very High Growth
- Major Developments

- Very High Growth
- Major Developments

- Very High Growth
- Major Developments



Constructed

• Proposed

Future
 Roundabout?)

City of Loveland, CO Arterial Intersection Spacing Loveland, CO 1997

City of Loveland, CO Business Access Loveland, CO 2002

~3,000 VPH

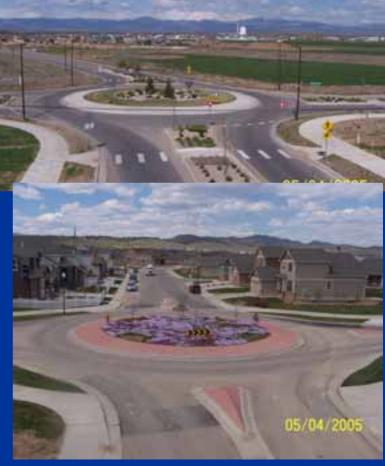
City of Loveland, CO Pedestrians Loveland, CO 2002

Signal

Loveland, CO

Roundabout

Loveland, CO


Safety of Roundabout

~ 1/10 the crash rate of comparable signals in Loveland

Super Wall Mart

- 6 high volume modern roundabouts since 1997
- 5 under construction in 2005
- 7 High Capacity Planned
- 26 "Traffic Calming" circles
- 75 signals

End / Summary

- Roundabout Design is Based on:
 Traffic/Transportation Engineering Science and Principles
 - Roundabouts are Not a Cure All
 - However significant benefits can be achieved for Improved Live-Ability
 - Correct Design Required for Optimal Operations

