Street Crossing by Blind and Sighted Pedestrians at Modern Roundabouts: An Overview of Research

- Richard Long, Daniel Ashmead, Nagui Rouphail, David Guth, Ron Hughes, Paul Ponchillia, Robert Wall, and a host of others
- Western Michigan University, Vanderbilt University, The University of North Carolina, North Carolina State University

Background

Baltimore and Tampa judgment studies Measures Findings

Nashville and Raleigh crossing studies Effect of judging position and yield detection system

Implication of finding on interventions for cumulative risk of dangerous crossings

Where do we go from here?

- Enhancing detection of gaps and yielded vehicles
- Signal strategies
- Other technologies
- Training and education of drivers and pedestrians

Roundabout Yield Detection

Blind Pedestrians

Richard Long, David Guth, Robert Wall Western Michigan University Nagui Rouphail, Bastian Schroeder, Kosok Chae Institute for Transportation Research and Education, North Carolina State University Ron Hughes - University of North Carolina David Jones - PBS&J Mark Harrison - NCDOT Daniel Ashmead - Vanderbilt University Janet Barlow, Billie Louise Bentzen Boston College, Accessible Design for the Blind Duane Geruschat - Johns Hopkins University, Maryland School for the Blind

Approach speed= 35 mph, Circulating speed= 18mph
Inscribed diameter= 88 ft, Central Island diameter= 52 ft
Peak Hour Volume ~ 1400 veh, 160 peds

Credit:www.skysiteaerial.com

Yield detect system

- One induction loop in crosswalk and one upstream of crosswalk
- If a vehicle was over the upstream loop for 2 seconds without the crosswalk loop being activated, the message "vehicle is yielding" was broadcast from a speaker – until the crosswalk loop was activated

General procedures

- 13 blind and 6 sighted subjects crossed entry and exit lanes 16 times with yield system on and 16 times with yield system off
- Measures included:
 - wait time
 - what traffic was doing when crossing was initiated
 - when the O&M instructor (or the ped) halted a crossing

General Results

- Blind peds tended to wait for cars to stop instead of taking rolling yields or crossing in gaps in traffic
- Blind peds missed crossable gaps at 3X the rate of sighted peds (325/832 vs. 51/382)

Yield detect system did not affect the number of stopped cars blind pedestrians missed

$\chi^2_{(2)} = 0.12$	Entry lane	Exit lane
System on	21	10
System off	21	12

Yield detect system decreased the number of crossable gaps blind pedestrians missed (but not significantly)

$\chi^2_{(2)} = 0.55$	Entry lane	Exit lane
System on	75	71
System off	82	91

Blind pedestrians had 36 interventions in 832 crossings (4.3%)
Interventions reflect "bad judgments" on the part of the pedestrian

$\chi^2_{(2)} = 1.65$	Entry lane	Exit lane
System on	6	5
System off	7	18

National Roundabout 2005 DRAF

In Summary

- Auditory yield detection is promising
 Appears to improve crossing efficiency
- Position of loops is critical and site specific

Thank you