Incorporating Exiting Vehicles in Capacity Estimation at Single-Lane U.S. Roundabouts

Yuri Mereszczak, University of Idaho Michael Dixon, University of Idaho Michael Kyte, University of Idaho Lee Rodegerdts, Kittelson and Associates, Inc. Miranda Blogg, Kittelson and Associates, Inc.

TRB National Roundabout Conference

Vail, Colorado

Research Hypothesis

• Exiting vehicles **should be accounted for** in estimating the capacity of a single-lane roundabout approach.

Current HCM 2000 practice

Conflicting volume (v_c) and critical gap (t_c) determined from **circulating** stream only

This Study

Conflicting volume (v_c) and critical gap (t_c) determined from both circulating and exiting streams

Review of Previous Work

• NCHRP 3-46

 50% right-turn vehicles incorporated at TWSC intersections

- Hagring (2001) – Proportion of Exiting Vehicles
- Troutbeck (1985 & 1990)
 Geometry → Entry Driver Ability to Distinguish Vehicle Paths

Overview

- Research Objectives
- Data Collection & Reduction
- Definition of Gaps
- Capacity Estimation & Comparison
- Proportion of Exiting Vehicles and Width of Splitter Island in Capacity Prediction

Research Objectives

Objective 1

- Account for Exiting Vehicles
 - Does Capacity Prediction Improve?

Objective 2

- Explain Differences between Estimated
 Capacities and Measured Capacities
 - Proportion of Exit Vehicles
 - Width of Splitter Island

Sammamish, WA

Gig Harbor, WA

Gorham, ME

<u>Taneytown, MD</u>

Lothian, MD

Bainbridge Island, WA

Port Orchard, WA

Bend, OR

Data Reduction

Equivalent Travel Time

Without Exit Vehicles:

With Exit Vehicles:

National Roundabout Conference

2005

DRAF

Without Exit Vehicles:

With Exit Vehicles:

National Roundabout Conference

2005

DRAF

Without Exit Vehicles:

With Exit Vehicles:

thiversity of Idaho

Assumptions in Definition of Gaps

- Distance covered in exactly the equivalent travel time
- Cannot distinguish future path prior to exit point
- Recognize vehicle exited at and after exit point

Orientation

- = Without the inclusion of exit vehicles
- = With the inclusion of 50% of exit vehicles
- = With the inclusion of 100% of exit vehicles
- = Field measurement

Critical Gap Comparison

- With Exit < Without Exit
- More Consistency With Exit

National Roundabout

onte

2005

ORAF

 $e^{-v(t_c)/3600}$

Follow-up Time Extraction

• Between 2.6 – 3.0 seconds

Conflicting Flow Comparison

- V_c Without Exit Vehicles = Circulating Flow
- V_c With Exit Vehicles = (P X Exit Flow) + Circulating Flow
 P = 0.5 and P = 1.0

Capacity Comparison

 Cumulative distribution with exit vehicles <u>matches</u> the field capacity distribution

Capacity Comparison

- Without exit vehicles: R² = 0.29
- With exit vehicles: $R^2 = 0.57$

Capacity Comparison

- On Average:
 - Without exit → always overpredict capacity
 - With 50% exit \rightarrow overpredict at 7 out of 8 approaches
 - With 100% exit → overpredict at 5 out of 8 approaches

Explaining Differences in Capacity Estimates and Measured Capacities

- Proportion of Exit Vehicles in the Major Stream (%)
- Width of the Splitter Island (ft)

Calculation of Mean Percent Error (MPE)

$$MPE = \frac{\left(c_{est} - c_{field}\right)}{c_{field}} \times 100\%$$

Time	Capacity Estimate	Capacity Estimate W/	Measured Field	Mean % Error	Mean % Error
Period	W/O Exit Veh. (vph)	100% Exit Veh. (vph)	Capacity (vph)	(Without Exit)	(With 100% Exit)
1	943	851	900	4.8%	-5.4%

MPE vs. Proportion of Exit Vehicles

- Overpredict at lower proportions
- Underpredict at higher proportions
- Driver expectation?

MPE vs. Width of Splitter Island

- Overpredict at narrow widths
- Underpredict at wider widths
- Lack of data at intermediate widths

Conclusions

- Account for Exiting Vehicles
 - Improved Capacity Prediction
- Weak Trends
 - Proportion of Exiting Vehicles
 - Width of Splitter Island
- Further Research

Thanks to Those Who Made this Study a Reality

National Cooperative Highway Research Program <u>Project 3-65 Operations Analysis Team Members</u>

- Principal Investigators
 - Lee Rodegerdts
 - Michael Kyte
 - George List
 - Aimee Flannery
 - Bruce Robinson
 - Wayne Kittelson
- Senior Guidance
 - Rod Troutbeck
 - Werner Brilon
- Data Analysis
 - Miranda Blogg
 - Michael Dixon
 - Karen Giese
 - Ning Wu
 - Marais Lombard
 - Lane Roberts

- Data Collection
 - Philip Rust
 - Hyunwoo Cho
 - Stacy Eisenman
 - Rebecca Brown
 - William Johnson
 - Angela Martin
 - Alixandra Demers
 - Yuri Mereszczak
- Data Extraction
 - Audra Sherman
 - Julia Busby
 - Brent Orton
 - Gary Haderlie
 - JoAnn Brazil
 - Chittemma Potlapati
 - Christina Hemberry