Incorporating Exiting Vehicles in Capacity Estimation at Single-Lane U.S. Roundabouts

Yuri Mereszczak, University of Idaho
Michael Dixon, University of Idaho
Michael Kyte, University of Idaho
Lee Rodegerdts, Kittelson and Associates, Inc.
Miranda Blogg, Kittelson and Associates, Inc.

TRB National Roundabout Conference
Vail, Colorado
May 22-25
Research Hypothesis

- Exiting vehicles **should be accounted for** in estimating the capacity of a single-lane roundabout approach.

Current HCM 2000 practice
Conflicting volume \((v_c) \) and critical gap \((t_c) \) determined from **circulating stream only**

This Study
Conflicting volume \((v_c) \) and critical gap \((t_c) \) determined from both circulating and exiting streams
Review of Previous Work

• NCHRP 3-46
 – 50% right-turn vehicles incorporated at TWSC intersections

• Hagring (2001)
 – Proportion of Exiting Vehicles

• Troutbeck (1985 & 1990)
 – Geometry → Entry Driver Ability to Distinguish Vehicle Paths
Overview

• Research Objectives

• Data Collection & Reduction

• Definition of Gaps

• Capacity Estimation & Comparison

• Proportion of Exiting Vehicles and Width of Splitter Island in Capacity Prediction
Research Objectives

Objective 1
– Account for Exiting Vehicles
 • Does Capacity Prediction Improve?

Objective 2
– Explain Differences between Estimated Capacities and Measured Capacities
 • Proportion of Exit Vehicles
 • Width of Splitter Island
Data Reduction

Location of Recorded Time Stamps

National Roundabout Conference 2005 DRAFT

National Roundabout Conference 2005 DRAFT

National Roundabout Conference 2005 DRAFT
Definition of Gaps

Without Exit Vehicles:

With Exit Vehicles:
Definition of Gaps

Without Exit Vehicles:

With Exit Vehicles:
Definition of Gaps

Without Exit Vehicles:

With Exit Vehicles:

\[E - C1 + \Delta T \]
Definition of Gaps

Without Exit Vehicles:

With Exit Vehicles:
Definition of Gaps

Without Exit Vehicles:

With Exit Vehicles:
Assumptions in Definition of Gaps

• Distance covered in exactly the equivalent travel time

• Cannot distinguish future path prior to exit point

• Recognize vehicle exited at and after exit point
Orientation

- Without the inclusion of exit vehicles
- With the inclusion of 50% of exit vehicles
- With the inclusion of 100% of exit vehicles
- Field measurement
Critical Gap Comparison

- With Exit < Without Exit
- More Consistency With Exit

Roundabout Approach

\[c_a = v_c \frac{e^{-\frac{v_a t_f}{3600}}}{1 - e^{-\frac{v_a t_f}{3600}}} \]
Follow-up Time Extraction

- Between 2.6 – 3.0 seconds

--- From Blogg, M. 2004 ---
Conflicting Flow Comparison

- V_c Without Exit Vehicles = Circulating Flow
- V_c With Exit Vehicles = $(P \times \text{Exit Flow}) + \text{Circulating Flow}$
 - $P = 0.5$ and $P = 1.0$

\[
\frac{c_a}{1 - e^{-V_{ce}/3600}} = \frac{V_c}{e^{-V_{ce}/3600}}
\]

= Number of 15-min samples
Capacity Comparison

• Cumulative distribution with exit vehicles matches the field capacity distribution
Capacity Comparison

- Without exit vehicles: \(R^2 = 0.29 \)
- With exit vehicles: \(R^2 = 0.57 \)
Capacity Comparison

- On Average:
 - Without exit → always overpredict capacity
 - With 50% exit → overpredict at 7 out of 8 approaches
 - With 100% exit → overpredict at 5 out of 8 approaches

= Number of 15-min samples
Explaining Differences in Capacity Estimates and Measured Capacities

• Proportion of Exit Vehicles in the Major Stream (%)

• Width of the Splitter Island (ft)
Calculation of Mean Percent Error (MPE)

\[
MPE = \left(\frac{C_{est} - C_{field}}{C_{field}} \right) \times 100\%
\]

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Capacity Estimate W/O Exit Veh. (vph)</th>
<th>Capacity Estimate W/ 100% Exit Veh. (vph)</th>
<th>Measured Field Capacity (vph)</th>
<th>Mean % Error (Without Exit)</th>
<th>Mean % Error (With 100% Exit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>943</td>
<td>851</td>
<td>900</td>
<td>4.8%</td>
<td>-5.4%</td>
</tr>
</tbody>
</table>
MPE vs. Proportion of Exit Vehicles

- Overpredict at lower proportions
- Underpredict at higher proportions
- Driver expectation?

\[R^2 = 0.32 \]
MPE vs. Width of Splitter Island

- Overpredict at narrow widths
- Underpredict at wider widths
- Lack of data at intermediate widths

\[R^2 = 0.25 \]
Conclusions

• Account for Exiting Vehicles
 – Improved Capacity Prediction

• Weak Trends
 – Proportion of Exiting Vehicles
 – Width of Splitter Island

• Further Research
Thanks to Those Who Made this Study a Reality

National Cooperative Highway Research Program
Project 3-65 Operations Analysis Team Members

• **Principal Investigators**
 – Lee Rodegerdts
 – Michael Kyte
 – George List
 – Aimee Flannery
 – Bruce Robinson
 – Wayne Kittelson

• **Senior Guidance**
 – Rod Troutbeck
 – Werner Brilon

• **Data Analysis**
 – Miranda Blogg
 – Michael Dixon
 – Karen Giese
 – Ning Wu
 – Marais Lombard
 – Lane Roberts

• **Data Collection**
 – Philip Rust
 – Hyunwoo Cho
 – Stacy Eisenman
 – Rebecca Brown
 – William Johnson
 – Angela Martin
 – Alixandra Demers
 – Yuri Mereszczak

• **Data Extraction**
 – Audra Sherman
 – Julia Busby
 – Brent Orton
 – Gary Haderlie
 – JoAnn Brazil
 – Chittemma Potlapati
 – Christina Hemberry